
- •Предисловие
- •Глава 1 Общие сведения о радиопередающих устройствах
- •1.1 Общие сведения.
- •1.2. Краткие сведения из истории радиопередающих устройств.
- •Глава 2 Активные элементы генераторов и их характеристики.
- •2.1 Основные обозначения и термины, применяемые в теории генераторов.
- •2.2 Статические характеристики основных активных элементов.
- •2.3. Идеализация статических характеристик активного элемента.
- •2.4. Уравнения идеализированных характеристик коллекторного тока аэ.
- •Таким образом, на границе ао и он еу и ек связаны определенным соотношением:
- •Глава 3
- •3.1 Колебания I и II рода.
- •3.2. Гармонический анализ импульсов коллекторного тока.
- •Таким образом:
- •3.3 Форма коллекторного напряжения.
- •3.4 Динамические характеристики активного элемента
- •3.5 Классификация режимов генератора по напряженности
- •3.6 Основные расчетные соотношения для критического и недонапряженного режимов
- •Энергетические соотношения в генераторе с внешним возбуждением
- •Выбор угла отсечки коллекторного тока
- •Критический коэффициент использования коллекторного напряжения
- •3.10 Порядок расчета коллекторной цепи гвв в недонапряженном и критическом режимах
- •Расчет входной цепи гвв
- •Расчет сеточных цепей генераторного тетрода
- •Расчет входной цепи генератора на
- •Расчет входной цепи генератора на полевом транзисторе с изолированным затвором
- •3.12. Нагрузочные характеристики генератора с внешним возбуждением
- •3.13. Работа генератора с внешним возбуждением на расстроенную нагрузку
- •3.14 Ключевые режимы генератора с внешним возбуждением
- •3.14.1 Последовательный резонансный инвертор
- •3.14.2 Генератор «с вилкой фильтров» на выходе
- •1.14.3. Генератор в режиме класса «е»
- •Умножители частоты
- •Транзисторные умножители частоты
- •Варакторные умножители частоты
- •Глава 4 Схемотехника генераторов с внешним возбуждением
- •4.1 Общие принципы построения схем
- •Схемотехника ламповых генераторов
- •Схемы анодной цепи генератора.
- •4.2.2 Схемы сеточных цепей
- •Емкость блокировочного конденсатора определяется неравенством .
- •Схемы питания цепей накала мощных генераторных ламп
- •Два варианта схемы с общей сеткой приведены на рисунке 4.16. В схеме с общей сеткой катод должен быть изолирован относительно земли по высокой частоте и соединен с нею по постоянному току.
- •Совместная работа генераторных ламп на общую нагрузку
- •А налогично для второй лампы получим
- •4.3 Схемотехника транзисторных генераторов
- •4.3.1 Схемы широкодиапазонных генераторов
- •4.3.2 Схемы узкополосных генераторов
- •4.4 Сложение мощностей генераторов высокой частоты
- •4.4.1 Синфазные мостовые схемы сложения мощностей
- •4.4.2 Квадратурные мосты сложения и деления мощностей
- •4.4.3 Широкополосные мосты на трансформаторах
- •4.4.4 Сложение мощностей генераторов с разными
- •4.5 Колебательные системы выходных ступеней радиопередающих устройств
- •4.5.1 Одноконтурная колебательная система
- •4.5.2 Колебательные системы на отрезках линий
- •Глава 5. Возбудители
- •5.1 Общие сведения об автогенераторах
- •5.2 Амплитудные условия в автогенераторе
- •5.3 Фазовые условия в автогенераторе
- •5.4 Стабильность частоты автогенератора
- •5.6 Кварцевые автогенераторы
- •5.6.1 Кварцевый резонатор
- •5.6.2 Схемы кварцевых автогенераторов
- •5.7 Диапазонно-кварцевая стабилизация частоты
- •5.7.1 Компенсационный метод синтеза частот
- •5.7.2 Декадный синтезатор частоты
- •5.7.3 Применение автоподстройки частоты в
- •6 Устойчивость работы генератора с внешним возбуждением
- •6.1 Устойчивость генератора с внешним возбуждением на
- •6.2 Паразитные колебания в генераторе
- •7 Радиопередатчики с амплитудной модуляцией
- •7.1 Общие сведения об амплитудной модуляции
- •7.2 Коллекторная амплитудная модуляция
- •7.3 Усиление модулированных колебаний
- •8 Однополосная модуляция
- •8.1 Общие сведения об однополосной модуляции
- •8.2 Методы формирования однополосного сигнала
- •8.2.1 Способ многократной балансной модуляции
- •8.2.2 Фазоразностный способ формирования
- •8.2.3 Раздельный способ усиления мощности составляющих однополосного сигнала
- •9 Передатчики с угловой модуляцией
- •9.1 Общие сведения об угловой модуляции
- •9.2 Спектр сигнала с угловой модуляцией
- •9.3 Методы получения частотной модуляции
- •9.3.1 Прямые методы чм
- •Список литературы
7 Радиопередатчики с амплитудной модуляцией
7.1 Общие сведения об амплитудной модуляции
В процессе изучения теории генератора нами использовалась модель сигнала в виде u(t)=Ucosωt. Такой сигнал обычно служит несущим колебанием, на которое в процессе модуляции или манипуляции наносится сигнал, содержащий информацию в исходной или предварительно преобразованной форме (цифровой, кодированной, шифрованной).
При амплитудной модуляции (АМ) в соответствии с информационным сигналом изменяется амплитуда несущего колебания. Для анализа свойств и особенностей АМ воспользуемся простейшей моделью информационного сигнала в форме моногармонического колебания косинусоидальной формы
uΩ(t)= UΩcosΩt (7.1)
здесь предполагается, что ω >> Ω.
С учётом (7.1) колебание с АМ принимает вид
u(t)=U(1+mcosΩt)cosωt (7.2)
В этом выражении m – коэффициент амплитудной модуляции
(7.3)
k – крутизна характеристики амплитудного модулятора.
В соответствии с (7.2), картина амплитудно-модулированного колебания во времени представлена на рисунке 7.1а.
Рисунок 7.1 – Колебание с амплитудной модуляцией
На этом рисунке «m+» - коэффициент модуляции «вверх» от уровня несущей; «m-» - коэффициент модуляции «вниз» от уровня несущей. По величине этих параметров можно, в первом приближении, судить о наличии нелинейных искажений. Как правило, появлению нелинейных искажений соответствует неравенство m+ и m- .
Преобразуем (7.2) к следующему виду
u(t)= U cosωt + U mcosΩt·cosωt =
=
U
cosωt+
(7.4)
На
основании (7.4) амплитудно-модулированное
колебание представляет собой сумму
трёх гармонических колебаний с постоянной
амплитудой и частотой ( для принятой
модели информационного сигнала!).
Спектр, соответствующий (7.4) представлен
на рисунке 7.1б. Таким образом,
амплитудно-модулированное колебание
содержит исходную несущую частоту и
две боковых частоты
.
При амплитудной модуляции сложным
сигналом (например, речевым, музыкальным
и т.п.), в спектре АМ
образуются
две боковых полосы частот, причём верхняя
боковая по форме спектра повторяет
спектр информационного сигнала, а нижняя
имеет инверсную форму (рисунок 7.1в).
Согласно (7.2) максимальная амплитуда АМ колебаний Uмакс=U(1+m). Соответственно, мощность несущей и максимальную мощность можно определить следующим образом
(7.5)
Среднюю, за период модулирующего сигнала, мощность АМ колебаний можно определить как сумму мощностей несущей и двух боковых
(7.6)
При m = 1, P1макс = 4Р1; Р1ср = 1,5Р1.
Качественные показатели АМ колебаний определяются статическими и динамическими модуляционными характеристиками. Статические модуляционные характеристики (СМХ) снимаются без процесса модуляции и представляют собой зависимость параметров режима генератора от модулирующего напряжения на АЭ (Uу,Ек). В качестве примера на рисунке 7.2а представлены СМХ, снятые в функции от управляющего напряжения.
Рисунок 7.2 – Статические и динамические
модуляционные характеристики
Динамические модуляционные характеристики (ДМХ) представляют собой зависимость коэффициента модуляции m и параметров режима генератора от амплитуды информационного сигнала. Снимаются динамические характеристики непосредственно в процессе модуляции. Примеры ДМХ представлены на рисунке 7.2б.
Качественные показатели АМ определяются также амплитудно-частотными характеристиками (АЧХ), которые снимаются в функции от частоты информационного сигнала F при m = 0,5 и 0,9. На рисунке 7.3 приводятся примеры АЧХ для коэффициента модуляции m и коэффициента гармоник Кг.
Рисунок 7.3 – Амплитудно-частотные характеристики
В качестве «опорной» частоты (Fo), относительно которой ведётся отсчет отклонения АЧХ, в радиовещательных передатчиках принимаются частоты 400 или 1000 Гц. Для коэффициента модуляции АЧХ снимается в децибеллах М[дб].
Амплитудная модуляция может быть осуществлена различными способами. В зависимости от того, в каком режиме по напряженности работает генератор, амплитуду колебаний можно менять с помощью напряжения возбуждения, коллекторного напряжения, напряжения смещения, сопротивления нагрузки. Однако на практике наибольшее применение нашли коллекторная (анодная, стоковая) модуляция и модуляция возбуждением, именуемая также усилением модулированных колебаний (УМК)