- •Предисловие
- •Глава 1 Общие сведения о радиопередающих устройствах
- •1.1 Общие сведения.
- •1.2. Краткие сведения из истории радиопередающих устройств.
- •Глава 2 Активные элементы генераторов и их характеристики.
- •2.1 Основные обозначения и термины, применяемые в теории генераторов.
- •2.2 Статические характеристики основных активных элементов.
- •2.3. Идеализация статических характеристик активного элемента.
- •2.4. Уравнения идеализированных характеристик коллекторного тока аэ.
- •Таким образом, на границе ао и он еу и ек связаны определенным соотношением:
- •Глава 3
- •3.1 Колебания I и II рода.
- •3.2. Гармонический анализ импульсов коллекторного тока.
- •Таким образом:
- •3.3 Форма коллекторного напряжения.
- •3.4 Динамические характеристики активного элемента
- •3.5 Классификация режимов генератора по напряженности
- •3.6 Основные расчетные соотношения для критического и недонапряженного режимов
- •Энергетические соотношения в генераторе с внешним возбуждением
- •Выбор угла отсечки коллекторного тока
- •Критический коэффициент использования коллекторного напряжения
- •3.10 Порядок расчета коллекторной цепи гвв в недонапряженном и критическом режимах
- •Расчет входной цепи гвв
- •Расчет сеточных цепей генераторного тетрода
- •Расчет входной цепи генератора на
- •Расчет входной цепи генератора на полевом транзисторе с изолированным затвором
- •3.12. Нагрузочные характеристики генератора с внешним возбуждением
- •3.13. Работа генератора с внешним возбуждением на расстроенную нагрузку
- •3.14 Ключевые режимы генератора с внешним возбуждением
- •3.14.1 Последовательный резонансный инвертор
- •3.14.2 Генератор «с вилкой фильтров» на выходе
- •1.14.3. Генератор в режиме класса «е»
- •Умножители частоты
- •Транзисторные умножители частоты
- •Варакторные умножители частоты
- •Глава 4 Схемотехника генераторов с внешним возбуждением
- •4.1 Общие принципы построения схем
- •Схемотехника ламповых генераторов
- •Схемы анодной цепи генератора.
- •4.2.2 Схемы сеточных цепей
- •Емкость блокировочного конденсатора определяется неравенством .
- •Схемы питания цепей накала мощных генераторных ламп
- •Два варианта схемы с общей сеткой приведены на рисунке 4.16. В схеме с общей сеткой катод должен быть изолирован относительно земли по высокой частоте и соединен с нею по постоянному току.
- •Совместная работа генераторных ламп на общую нагрузку
- •А налогично для второй лампы получим
- •4.3 Схемотехника транзисторных генераторов
- •4.3.1 Схемы широкодиапазонных генераторов
- •4.3.2 Схемы узкополосных генераторов
- •4.4 Сложение мощностей генераторов высокой частоты
- •4.4.1 Синфазные мостовые схемы сложения мощностей
- •4.4.2 Квадратурные мосты сложения и деления мощностей
- •4.4.3 Широкополосные мосты на трансформаторах
- •4.4.4 Сложение мощностей генераторов с разными
- •4.5 Колебательные системы выходных ступеней радиопередающих устройств
- •4.5.1 Одноконтурная колебательная система
- •4.5.2 Колебательные системы на отрезках линий
- •Глава 5. Возбудители
- •5.1 Общие сведения об автогенераторах
- •5.2 Амплитудные условия в автогенераторе
- •5.3 Фазовые условия в автогенераторе
- •5.4 Стабильность частоты автогенератора
- •5.6 Кварцевые автогенераторы
- •5.6.1 Кварцевый резонатор
- •5.6.2 Схемы кварцевых автогенераторов
- •5.7 Диапазонно-кварцевая стабилизация частоты
- •5.7.1 Компенсационный метод синтеза частот
- •5.7.2 Декадный синтезатор частоты
- •5.7.3 Применение автоподстройки частоты в
- •6 Устойчивость работы генератора с внешним возбуждением
- •6.1 Устойчивость генератора с внешним возбуждением на
- •6.2 Паразитные колебания в генераторе
- •7 Радиопередатчики с амплитудной модуляцией
- •7.1 Общие сведения об амплитудной модуляции
- •7.2 Коллекторная амплитудная модуляция
- •7.3 Усиление модулированных колебаний
- •8 Однополосная модуляция
- •8.1 Общие сведения об однополосной модуляции
- •8.2 Методы формирования однополосного сигнала
- •8.2.1 Способ многократной балансной модуляции
- •8.2.2 Фазоразностный способ формирования
- •8.2.3 Раздельный способ усиления мощности составляющих однополосного сигнала
- •9 Передатчики с угловой модуляцией
- •9.1 Общие сведения об угловой модуляции
- •9.2 Спектр сигнала с угловой модуляцией
- •9.3 Методы получения частотной модуляции
- •9.3.1 Прямые методы чм
- •Список литературы
Расчет входной цепи генератора на
биполярном транзисторе
На рисунке 3.16 представлен упрощенный вариант эквивалентной схемы биполярного транзистора для активной области статических характеристик.
Рисунок 3.16 – Эквивалентная схема биполярного транзистора
Здесь СК – ёмкость коллекторного перехода; СБ,СД - барьерная и диффузионная ёмкости эмиттерно-базового перехода; LБ, LК, LЭ – индуктивности выводов; rБ, rЭ , rК - сопротивления кристалла и выводов соответствующих областей; ключ S-моделирует переход эмиттерно-базовой цепи из открытого в закрытое состояние; rβ – сопротивление рекомбинации; β – коэффициент усиления по току.
Из эквивалентной схемы следует, что биполярный транзистор (БПТ) управляется током, причем ток коллектора iк пропорционален току базы ( iБ )
(3.40)
Здесь βо - статический коэффициент усиления по току ( на частоте ω=0 );
- среднее время жизни неосновных носителей (время рекомбинации);
(3.41)
Графические зависимости |β| и φ представлены на рисунке 3.17.
Из (3.41) следует:
- - частота, на которой |β| уменьшается в раз;
- - частота, на которой |β|=1 .
Причем >> , следовательно
(3.42)
Рисунок 3.17 – Частотные характеристики
биполярного транзистора
Диапазон рабочих частот транзистора условно разбивают на три зоны
0 < ω < 0,3 - низкие частоты, где | β | βо;
0,3 < ω < 3 - средние частоты, где
(3.43)
3 < ω < - высокие частоты, где
(3.44)
Заметим, что использование транзисторов в номинальном режиме на частотах ниже (1.. 3) обычно не рекомендуется [ 1 ], т.к. вследствие слабого влияния емкости коллекторного перехода, пикфактор коллекторного напряжения может достигать 3..4-х кратной величины по отношению к напряжению коллекторного питания. Заводы изготовители для мощных высокочастотных транзисторов оговаривают запрет на их использование на частотах ниже fн, которая как правило выше fβ=ωβ/2π. В связи с этим, в дальнейшем будем использовать для β выражение (3.44).
Чтобы выяснить характер процессов во входной цепи транзистора, схема которой приведена на рисунке 3.18а, воспользуемся упрощенной эквивалентной схемой транзистора 3.18б, в которой не учитываются индуктивности выводов базы и эмиттера, активные сопротивления эмиттерно-базового перехода, а также емкость коллекторного перехода. Эти параметры определяют количественные показатели входной цепи и мало влияют на качественный характер процессов.
В результате такого упрощения, входная цепь транзистора может быть представлена двумя схемами, соответствующим закрытому (рис.3.18в) и открытому (рис.3.18г) эмиттерно-базовому переходу. В схему также введены источник возбуждения иГ с внутренним сопротивлением RГ и резистор RБ. Предполагается также, что EБ = 0.
Рисунок 3.18 – Эквивалентные схемы входной
цепи транзистора
В схемах рисунок 3.18в,г учитывается, что СБ << CД, RБ >> rβ и RБ >> 1/ωСБ. Для эквивалентной схемы рис.3.18в (закрытое состояние перехода) напряжение на переходе еБ определяется выражением
(3.45)
где φи – фазовый сдвиг между напряжением генератора иГ и напряжением на переходе еБ.
Аналогичное выражение может быть получено для рис. 3.18г (открытое состояние перехода)
(3.46)
Поскольку СБ << CД ,
Характер процессов в цепи базы иллюстрируется рисунком 3.19.
Пока переход закрыт, напряжение на базе изменяется согласно (3.45).
В точке (1), соответствующей напряжению отсечки ЕБ0, переход открывается. Поскольку открытому переходу соответствует эквивалентная схема рис. 3.18г и напряжение на переходе должно соответствовать (3.46), с момента отпирания перехода происходит плавное перемещение напряжения на базе еБ с графика на график и изменение по этому графику до точки (2), когда переход снова закрывается. В этот момент, вследствие малой постоянной времени закрытого перехода, происходит резкое перемещение на график
Рисунок 3.19 – Волновая диаграмма эквивалентной схемы
биполярного транзистора
Форма импульса коллекторного тока определяется формой напряжения на базе в интервале времени (1-2). Ток базы также существует на интервале (1-2). Вследствие емкостного характера сопротивления перехода, ток базы опережает напряжение на базе (φ), поэтому, изменяясь по гармоническому закону, в момент соответствующий точке (4), он меняет направление.
Приведенные соображения подтверждаются результатами математического моделирования с учетом реальных параметров транзистора. Волновые диаграммы, полученные при этом, представлены на рисунке 3.20.
Рисунок 3.20 – Волновая диаграмма биполярного транзистора
по результатам математического моделирования
Для расчета входной цепи необходимо определить ток базы через параметры выходной цепи. Согласно (3.40) и (3.44).
(3.46)
Аналогичное выражение (с небольшой погрешностью) может быть записано для амплитуды образующей косинусоиды тока базы и тока коллектора
(3.47)
Учитывая знакопеременный характер тока базы, в первом приближении, можно считать амплитуду образующей косинусоиды – первой гармоникой тока базы .
Однако полученные выражения не учитывают реакцию коллекторной цепи через емкость СК (см. рисунок 3.21), которая определяется током
Рисунок 3.21 – Схема реакции коллекторной цепи
С учетом этой реакции
Поскольку UK >> UБ и учитывая, что UK = IK1·RK, получим
Для расчета входной мощности, коэффициента усиления и элементов межкаскадной связи необходимо определить полное входное сопротивление транзистора
Zвх = rвх+jxвх
При этом недостаточно принятых ранее упрощений. Необходимо учесть индуктивности и активные сопротивления выводов транзистора. Однако это выходит за рамки настоящего пособия. Соответствующие выкладки и расчетные соотношения можно найти в [ ]. Входная мощность и коэффициент усиления генератора рассчитываются следующим образом
Рвх=0,5· ·rвх; Кр=Р1/Pвх
Входная мощность рассеивается в кристалле транзистора, поэтому при расчете теплового режима транзистора входная мощность должна суммироваться с мощностью потерь в коллекторной цепи.
Асимметрия импульса коллекторного тока не позволяет использовать рассмотренную выше обобщенную методику расчета выходной цепи АЭ
. Кроме того, асимметрия импульса при усилении модулированных по амплитуде колебаний приводит к паразитной фазовой модуляции из-за смещения положения максимума тока. В результате расширяется полоса частот, занимаемая сигналом.
На практике стремятся обеспечить симметрию импульса коллекторного тока подбором RБ так, чтобы постоянная времени входной цепи закрытого и открытого перехода оставалась неизменной. При этом удается обеспечить форму импульса близкую к симметричной. В соответствии с рисунком 18б для этого необходимо выполнить условие
Отсюда можно определить величину и RБ