- •Предисловие
- •Глава 1 Общие сведения о радиопередающих устройствах
- •1.1 Общие сведения.
- •1.2. Краткие сведения из истории радиопередающих устройств.
- •Глава 2 Активные элементы генераторов и их характеристики.
- •2.1 Основные обозначения и термины, применяемые в теории генераторов.
- •2.2 Статические характеристики основных активных элементов.
- •2.3. Идеализация статических характеристик активного элемента.
- •2.4. Уравнения идеализированных характеристик коллекторного тока аэ.
- •Таким образом, на границе ао и он еу и ек связаны определенным соотношением:
- •Глава 3
- •3.1 Колебания I и II рода.
- •3.2. Гармонический анализ импульсов коллекторного тока.
- •Таким образом:
- •3.3 Форма коллекторного напряжения.
- •3.4 Динамические характеристики активного элемента
- •3.5 Классификация режимов генератора по напряженности
- •3.6 Основные расчетные соотношения для критического и недонапряженного режимов
- •Энергетические соотношения в генераторе с внешним возбуждением
- •Выбор угла отсечки коллекторного тока
- •Критический коэффициент использования коллекторного напряжения
- •3.10 Порядок расчета коллекторной цепи гвв в недонапряженном и критическом режимах
- •Расчет входной цепи гвв
- •Расчет сеточных цепей генераторного тетрода
- •Расчет входной цепи генератора на
- •Расчет входной цепи генератора на полевом транзисторе с изолированным затвором
- •3.12. Нагрузочные характеристики генератора с внешним возбуждением
- •3.13. Работа генератора с внешним возбуждением на расстроенную нагрузку
- •3.14 Ключевые режимы генератора с внешним возбуждением
- •3.14.1 Последовательный резонансный инвертор
- •3.14.2 Генератор «с вилкой фильтров» на выходе
- •1.14.3. Генератор в режиме класса «е»
- •Умножители частоты
- •Транзисторные умножители частоты
- •Варакторные умножители частоты
- •Глава 4 Схемотехника генераторов с внешним возбуждением
- •4.1 Общие принципы построения схем
- •Схемотехника ламповых генераторов
- •Схемы анодной цепи генератора.
- •4.2.2 Схемы сеточных цепей
- •Емкость блокировочного конденсатора определяется неравенством .
- •Схемы питания цепей накала мощных генераторных ламп
- •Два варианта схемы с общей сеткой приведены на рисунке 4.16. В схеме с общей сеткой катод должен быть изолирован относительно земли по высокой частоте и соединен с нею по постоянному току.
- •Совместная работа генераторных ламп на общую нагрузку
- •А налогично для второй лампы получим
- •4.3 Схемотехника транзисторных генераторов
- •4.3.1 Схемы широкодиапазонных генераторов
- •4.3.2 Схемы узкополосных генераторов
- •4.4 Сложение мощностей генераторов высокой частоты
- •4.4.1 Синфазные мостовые схемы сложения мощностей
- •4.4.2 Квадратурные мосты сложения и деления мощностей
- •4.4.3 Широкополосные мосты на трансформаторах
- •4.4.4 Сложение мощностей генераторов с разными
- •4.5 Колебательные системы выходных ступеней радиопередающих устройств
- •4.5.1 Одноконтурная колебательная система
- •4.5.2 Колебательные системы на отрезках линий
- •Глава 5. Возбудители
- •5.1 Общие сведения об автогенераторах
- •5.2 Амплитудные условия в автогенераторе
- •5.3 Фазовые условия в автогенераторе
- •5.4 Стабильность частоты автогенератора
- •5.6 Кварцевые автогенераторы
- •5.6.1 Кварцевый резонатор
- •5.6.2 Схемы кварцевых автогенераторов
- •5.7 Диапазонно-кварцевая стабилизация частоты
- •5.7.1 Компенсационный метод синтеза частот
- •5.7.2 Декадный синтезатор частоты
- •5.7.3 Применение автоподстройки частоты в
- •6 Устойчивость работы генератора с внешним возбуждением
- •6.1 Устойчивость генератора с внешним возбуждением на
- •6.2 Паразитные колебания в генераторе
- •7 Радиопередатчики с амплитудной модуляцией
- •7.1 Общие сведения об амплитудной модуляции
- •7.2 Коллекторная амплитудная модуляция
- •7.3 Усиление модулированных колебаний
- •8 Однополосная модуляция
- •8.1 Общие сведения об однополосной модуляции
- •8.2 Методы формирования однополосного сигнала
- •8.2.1 Способ многократной балансной модуляции
- •8.2.2 Фазоразностный способ формирования
- •8.2.3 Раздельный способ усиления мощности составляющих однополосного сигнала
- •9 Передатчики с угловой модуляцией
- •9.1 Общие сведения об угловой модуляции
- •9.2 Спектр сигнала с угловой модуляцией
- •9.3 Методы получения частотной модуляции
- •9.3.1 Прямые методы чм
- •Список литературы
Предисловие
Настоящее пособие написано в соответствии с программой курса ''Радиопередающие устройства'' и составлено на основе лекций в Сибирском государственном университете телекоммуникаций и информатики.
Пособие содержит изложение теории генератора с независимым (внешним) возбуждением, вопросов его схемотехники и методов управления колебаниями высокой частоты. Подробно рассмотрены методы модуляции и манипуляции в передатчиках различного назначения. Три раздела посвящены теории автогенераторов и проблемам стабилизации частоты. Основы методов расчета режимов и элементов генератора рассматриваются в соответствующих разделах пособия.
Вопросы проектирования и конструирования в пособии не рассматриваются, т.к. они представляют собой предмет особого курса.
Глава 1 Общие сведения о радиопередающих устройствах
1.1 Общие сведения.
Радиопередающие устройства предназначены для генерирования и формирования радиосигналов и представляют собой составную часть большинства существующих систем телекоммуникаций.
Генерацией называется преобразование энергии источников постоянного тока в энергию колебаний высокой частоты (ВЧ). Соответственно под формированием радиосигналов понимается управление (модуляция) одним из параметров ВЧ колебания (амплитудой, частотой, фазой) в соответствии с передаваемым сигналом. Модуляция цифровым сигналом получила название - манипуляция.
Упрощенная структурная схема радиопередающего устройства (передатчика)представлена на рисунке 1.1.
Рис. 1.1. Структурная схема пердатчика
В – возбудитель, обеспечивающий генерирование высокостабильных колебаний ВЧ.
ГВВ – генератор с внешним возбуждением (усилитель мощности колебаний ВЧ УМ, предварительный усилитель - ПУ).
М – модулятор (манипулятор).
ЧМ – частотная модуляция (манипуляция).
ФМ – фазовая модуляция (манипуляция).
ОПМ – однополосная модуляция.
АМ – амплитудная модуляция.
Частотная, фазовая и однополосная модуляция, как правило, осуществляются в возбудителе. амплитудная модуляция - в выходных каскадах.
В рассматриваемом курсе изучаются только генераторы, модуляторы и возбудители. Остальные части радиопередатчика (источники питания, антенны) изучаются в соответствующих курсах.
1.2. Краткие сведения из истории радиопередающих устройств.
Днем изобретения радио считается 7 мая 1895г., когда А.С. Попов продемонстрировал первый радиоприемник, регистрировавший грозовые разряды. Первый передатчик, построенный также А.С. Поповым, был использован для передачи телеграфных сигналов 24 марта 1986г. В передатчике Попова с помощью искрового разряда были получены затухающие электрические колебания, частота и мощность которых определялась размерами антенны. Поэтому первые мощные передатчики искрового типа работали на частоте 15 – 30 кГц.
Затухающий характер колебаний на выходе искровых передатчиков не позволял работать в телефонном режиме и приводил к большому уровню помех. Мощность искровых передатчиков достигала 100 кВт, однако из-за указанных выше недостатков, уже в 1916 г. их строительство было прекращено.
На смену искровым передатчикам пришли дуговые и машинные передатчики. В дуговых генераторах использовалось отрицательное сопротивление на падающем участке вольтамперной характеристики дугового разряда; это позволяло скомпенсировать активные потери в колебательном контуре и получить незатухающие колебания. Впервые появилась возможность телефонной работы. Поскольку гасить и зажигать дугу было очень сложно, для телеграфной работы использовалась частотная манипуляция. Недостатки дуговых передатчиков обусловлены также инерционностью дугового разряда и трудностями обеспечения равномерного горения, которые не позволяли получить ВЧ колебания с необходимой стабильностью частоты.
Практически одновременно с дуговыми создавались машинные передатчики, основанные на принципах генераторов переменного тока промышленной частоты. Необходимость получения высоких частот привела к существенным изменениям конструкции машин. В этой области больших успехов достиг советский инженер (в последствии академик) В.П. Вологдин. Его машины отличались достаточно высокими к.п.д. и стабильностью частоты при мощности до 150 кВт. Основной недостаток машинных передатчиков – невозможность получения достаточно высоких частот.
В.П. Вологдин у разработанной им машины высокой частоты
П ервый генератор на электронной лампе был создан в 1913г. немецким инженером А. Мейснером. Совершенствование генераторных ламп шло очень быстро. Большую роль в этом сыграла Нижегородская радиолаборатория, которой руководил выдающийся советский инженер М.А.Бонч-Бруевич. Уже к 1925г. в этой лаборатории впервые в мире была создана электронная лампа мощностью 100 кВт. Конструкция ламп Нижегородской лаборатории была настолько совершенной, что практически не изменилась до наших дней. В дальнейшем вся передающая техника стала создаваться только на базе электронных приборов, сначала на электронных генераторных лампах, а затем с изобретением транзистора, и на твердотельных приборах. Современные передатчики в диапазоне до 1,5 МГц выпускаются только в транзисторном варианте, вплоть до 1000 кВт.
Ламповые и транзисторные генераторы позволили освоить частоты до 1000 МГц, а при относительно низких уровнях мощности (1-10 Вт) транзисторные генераторы способны работать до 10 ГГц. Сверхвысокие частоты М.А.Бонч-Бруевич
большой мощности стало возможным получать
после изобретения магнетрона, многорезонаторного клистрона и лампы бегущей волны (ЛБВ). Следует отметить, что в 20 – 40-х годах отечественная электроника находилась на самых передовых рубежах науки и техники.
Огромный вклад в ее развитие внесли такие радиоспециалисты, как
М.А. Бонч-Бруевич, М.В. Шулейкин, А.И. Берг, А.П. Минц, З.И. Модель,
В.А. Котельников, М.С. Нейман.
М.В.Шулейкин А.И.Берг
Статьи, книги, учебники, написанные ими, заложили основы теории генератора значительно раньше, чем это было сделано в зарубежной печати.