Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матлаб.docx
Скачиваний:
10
Добавлен:
13.09.2019
Размер:
1.01 Mб
Скачать

Сложение, вычитание, умножение, транспортирование и возведение в степень

>> s=a+c

s =

6 0 6

6 6 3

>> r=c-a

r =

0 -2 8

2 -2 -3

>> s=a+b

??? Error using ==> plus

Matrix dimensions must agree.

>> p=c*b

p =

-25 9 11

20 26 -4

>> p=a*3

p =

9 3 -3

6 12 9

>> p=3*a

p =

9 3 -3

6 12 9

>> b'

ans =

4 2 -5

3 7 1

-1 0 2

>> b.'

ans =

4 2 -5

3 7 1

-1 0 2

>> k=[1-i, 2+3i; 3-5i, 1-9i]

k =

1.0000 - 1.0000i 2.0000 + 3.0000i

3.0000 - 5.0000i 1.0000 - 9.0000i

>> k'

ans =

1.0000 + 1.0000i 3.0000 + 5.0000i

2.0000 - 3.0000i 1.0000 + 9.0000i

>> k.'

ans =

1.0000 - 1.0000i 3.0000 - 5.0000i

2.0000 + 3.0000i 1.0000 - 9.0000i

>> b2=b^2

b2 =

27 32 -6

22 55 -2

-28 -6 9

>> (a+c)*b^3*(a-c)'

ans =

1848 1914

10290 3612

>> a=[1 3 -2];

>> b=[2 0 1; -4 8 -1; 0 9 2];

>> c=[-8; 3; 4];

>> a*b*c

ans =

74

>> a=[1.2 0.3 -0.2; 0.5 2.1 1.3; -0.9 0.7 5.6];

>> b=[1.3; 3.9; 5.4];

>> x=a\b

x =

1.0000

1.0000

1.0000

>> a*x

ans =

1.3000

3.9000

5.4000

>> a=[];

>> b=[];

Считывание и запись данных. Блочные матрицы

>> a=load('matr.txt');

>> b=load('rside.txt');

>> x=a\b;

>> save 'sol.txt' x -ascii

>> save 'sol.txt' x -ascii -double

>> save 'matra.txt' a -ascii

>> close all

>> a=[-1 4; -1 4];

>> b=[2 0;0 5];

>> c=[3 -3;-3 3];

>> d=[8 9; 1 10];

>> k=[a b; c d]

k =

-1 4 2 0

-1 4 0 5

3 -3 8 9

-3 3 1 10

>> k=[[a;c][b;d]]

??? k=[[a;c][b;d]]

|

Error: Unbalanced or unexpected parenthesis or bracket.

>> k=[[a;c] [b;d]]

k =

-1 4 2 0

-1 4 0 5

3 -3 8 9

-3 3 1 10

>> s=[2 0; 0 3];

>> a=[4;5];

>> b=[-9 9];

>> m=[s a;b 2.5]

m =

2.0000 0 4.0000

0 3.0000 5.0000

-9.0000 9.0000 2.5000

>> m=[[s;b] [a;2.5]]

m =

2.0000 0 4.0000

0 3.0000 5.0000

-9.0000 9.0000 2.5000

>> r=[1 2;3 4];

>> q=[5 6 7; 8 9 10; 11 12 13];

>> t=[-3 5; 6 7];

>> z=blkdiag(r, q, t)

z =

1 2 0 0 0 0 0

3 4 0 0 0 0 0

0 0 5 6 7 0 0

0 0 8 9 10 0 0

0 0 11 12 13 0 0

0 0 0 0 0 -3 5

0 0 0 0 0 6 7

Блочные матрицы часть 1\2

>> p=[1 2 0 2; 4 10 12 5; 0 11 10 5; 9 2 3 5];

>> p1=p(2:3,2:3)

p1 =

10 12

11 10

>> p1=p(2,:)

p1 =

4 10 12 5

>> p1=p(2, 2:end)

p1 =

10 12 5

>> m=[2 0 3; 1 1 4; 6 1 3];

>> m(1,:)=[];

>> m

m =

1 1 4

6 1 3

>> m(:, 2:3)=[]

m =

1

6

>> a(1:5, 1:5)=0

a =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

>> a(1,:)=1

a =

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

>> a(end, 3:end)=-1

a =

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 -1 -1 -1

>> a=zeros(3,6)

a =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

>> a=zeros(3)

a =

0 0 0

0 0 0

0 0 0

>> t=eye(4)

t =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

>> t=eye(4,8)

t =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

>> e=ones(3,8)

e =

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

>> e=ones(3)

e =

1 1 1

1 1 1

1 1 1

>> r=rand(3,5)

r =

0.8147 0.9134 0.2785 0.9649 0.9572

0.9058 0.6324 0.5469 0.1576 0.4854

0.1270 0.0975 0.9575 0.9706 0.8003

>> rn=rand(3,5)

rn =

0.1419 0.7922 0.0357 0.6787 0.3922

0.4218 0.9595 0.8491 0.7577 0.6555

0.9157 0.6557 0.9340 0.7431 0.1712

>> rn=randn(3,5)

rn =

0.8884 -0.8095 0.3252 -1.7115 0.3192

-1.1471 -2.9443 -0.7549 -0.1022 0.3129

-1.0689 1.4384 1.3703 -0.2414 -0.8649

>> rand(3)

ans =

0.4898 0.7094 0.6797

0.4456 0.7547 0.6551

0.6463 0.2760 0.1626

>> randn(3)

ans =

-1.1135 -0.7697 1.1174

-0.0068 0.3714 -1.0891

1.5326 -0.2256 0.0326

>> r=rand(1,6)

r =

0.6991 0.8909 0.9593 0.5472 0.1386 0.1493

>> d=[1;2;3;4];

>> b=diag(d)

b =

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

>> d=[1;2];

>> d1=diag(d,2)

d1 =

0 0 1 0

0 0 0 2

0 0 0 0

0 0 0 0

>> d1=diag(d,-2)

d1 =

0 0 0 0

0 0 0 0

1 0 0 0

0 2 0 0

>> a=[10 1 2; 1 20 3; 2 3 30]

a =

10 1 2

1 20 3

2 3 30

>> d=diag(a)

d =

10

20

30

>> m=[eye(5) 2*ones(5); 3*ones(5) -4*eye(5)];

>> save 'm.txt' m -ascii

>> m

m =

1 0 0 0 0 2 2 2 2 2

0 1 0 0 0 2 2 2 2 2

0 0 1 0 0 2 2 2 2 2

0 0 0 1 0 2 2 2 2 2

0 0 0 0 1 2 2 2 2 2

3 3 3 3 3 -4 0 0 0 0

3 3 3 3 3 0 -4 0 0 0

3 3 3 3 3 0 0 -4 0 0

3 3 3 3 3 0 0 0 -4 0

3 3 3 3 3 0 0 0 0 -4

>> g=2*eye(7)diag(ones(1,6), 1)+diag(ones(1,6), -1)

??? g=2*eye(7)diag(ones(1,6), 1)+diag(ones(1,6), -1)

|

Error: Unexpected MATLAB expression.

>> g=2*eye(7)diag(ones(1,6), 1)+diag(ones(1,6)), -1)

??? g=2*eye(7)diag(ones(1,6), 1)+diag(ones(1,6)), -1)

|

Error: Unexpected MATLAB expression.

>> g=2*eye(7) +diag(ones(1,6), 1)+diag(ones(1,6), -1)

g =

2 1 0 0 0 0 0

1 2 1 0 0 0 0

0 1 2 1 0 0 0

0 0 1 2 1 0 0

0 0 0 1 2 1 0

0 0 0 0 1 2 1

0 0 0 0 0 1 2

>> save 'g.txt' g -ascii

>>clc

Визуализация матриц

>> load 'm.txt'

>> imagesc(m)

>> colorbar

>>colormap(gray)

>> load 'g.txt'

>> imagesc(g)

>> colorbar

>> help imagesc

IMAGESC Scale data and display as image.

IMAGESC(...) is the same as IMAGE(...) except the data is scaled

to use the full colormap.

IMAGESC(...,CLIM) where CLIM = [CLOW CHIGH] can specify the

scaling.

See also image, colorbar, imread, imwrite.

Reference page in Help browser

doc imagesc

Поэлементные операции и встроенные функции Часть 1\2

>> a=[2 5 -1; 3 4 9];

>> b=[-1 2 8; 7 -3 -5];

>> c=a.*b

c =

-2 10 -8

21 -12 -45

>> r1=a./b

r1 =

-2.0000 2.5000 -0.1250

0.4286 -1.3333 -1.8000

>> r2=a.\b

r2 =

-0.5000 0.4000 -8.0000

2.3333 -0.7500 -0.5556

>> p=a.^2

p =

4 25 1

9 16 81

>> ab=a.^b

ab =

1.0e+003 *

0.0005 0.0250 0.0010

2.1870 0.0000 0.0000

>> format short

>> ab

ab =

1.0e+003 *

0.0005 0.0250 0.0010

2.1870 0.0000 0.0000

>> a=[pi/2 -pi/2 0; pi -pi 2*pi; 0 2*pi pi/3]

a =

1.5708 -1.5708 0

3.1416 -3.1416 6.2832

0 6.2832 1.0472

>> c=cos(a)

c =

0.0000 0.0000 1.0000

-1.0000 -1.0000 1.0000

1.0000 1.0000 0.5000

>> m=[1 -2 -4; 3 -6 4; 2 -2 0];

>> s=sum(m)

s =

6 -10 0

>>s2=sum(m,2)

s2 =

-5

1

0

>> s=sum(m,1)

s =

6 -10 0

>> p=prod(m)

p =

6 -24 0

>> p2=prod(m,2)

p2 =

8

-72

0

>> mc=sort(m)

mc =

1 -6 -4

2 -2 0

3 -2 4

>> mr=sort(m,2)

mr =

-4 -2 1

-6 3 4

-2 0 2

>> [mc, ind]=sort(m)

mc =

1 -6 -4

2 -2 0

3 -2 4

ind =

1 2 1

3 1 3

2 3 2

>> mx=max(m)

mx =

3 -2 4

>> mn=min(m)

mn =

1 -6 -4

>> [mx, k]=max(m)

mx =

3 -2 4

k =

2 1 2

>> [mn, n]=min(m)

mn =

1 -6 -4

n =

1 2 1

>> p=[4 3 -1

2 0 7

4 5 8];

>> q=[10 0 11

-5 3 2

4 7 9];

>> s=max(p,1)

s =

4 3 1

2 1 7

4 5 8

>> mx=max(s, [], 2)

mx =

4

7

8

>> [mx, n]=max(s, [], 2)

mx =

4

7

8

n =

1

3

3

>> q1=rot90(p)

q1 =

-1 7 8

3 0 5

4 2 4

>> q2=rot90(q1)

q2 =

8 5 4

7 0 2

-1 3 4

>> fliplr(q2)

ans =

4 5 8

2 0 7

4 3 -1

>> q3=[1; 2; 3; 4; 5];

>> fliplr(q3)

ans =

1

2

3

4

5

>> help datafun

Data analysis and Fourier transforms.

Basic operations.

max - Largest component.

min - Smallest component.

mean - Average or mean value.

median - Median value.

std - Standard deviation.

var - Variance.

sort - Sort in ascending order.

sortrows - Sort rows in ascending order.

sum - Sum of elements.

prod - Product of elements.

hist - Histogram.

histc - Histogram count.

trapz - Trapezoidal numerical integration.

cumsum - Cumulative sum of elements.

cumprod - Cumulative product of elements.

cumtrapz - Cumulative trapezoidal numerical integration.

Finite differences.

diff - Difference and approximate derivative.

gradient - Approximate gradient.

del2 - Discrete Laplacian.

Correlation.

corrcoef - Correlation coefficients.

cov - Covariance matrix.

subspace - Angle between subspaces.

Filtering and convolution.

filter - One-dimensional digital filter.

filter2 - Two-dimensional digital filter.

conv - Convolution and polynomial multiplication.

conv2 - Two-dimensional convolution.

convn - N-dimensional convolution.

deconv - Deconvolution and polynomial division.

detrend - Linear trend removal.

Fourier transforms.

fft - Discrete Fourier transform.

fft2 - Two-dimensional discrete Fourier transform.

fftn - N-dimensional discrete Fourier Transform.

ifft - Inverse discrete Fourier transform.

ifft2 - Two-dimensional inverse discrete Fourier transform.

ifftn - N-dimensional inverse discrete Fourier Transform.

fftshift - Shift zero-frequency component to center of spectrum.

ifftshift - Inverse FFTSHIFT.

>> [x, y]=meshgrid(0:0.2:1, 0:0.2:1)

x =

0 0.2000 0.4000 0.6000 0.8000 1.0000

0 0.2000 0.4000 0.6000 0.8000 1.0000

0 0.2000 0.4000 0.6000 0.8000 1.0000

0 0.2000 0.4000 0.6000 0.8000 1.0000

0 0.2000 0.4000 0.6000 0.8000 1.0000

0 0.2000 0.4000 0.6000 0.8000 1.0000

y =

0 0 0 0 0 0

0.2000 0.2000 0.2000 0.2000 0.2000 0.2000

0.4000 0.4000 0.4000 0.4000 0.4000 0.4000

0.6000 0.6000 0.6000 0.6000 0.6000 0.6000

0.8000 0.8000 0.8000 0.8000 0.8000 0.8000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

>> z=x.^2+y.^2

z =

0 0.0400 0.1600 0.3600 0.6400 1.0000

0.0400 0.0800 0.2000 0.4000 0.6800 1.0400

0.1600 0.2000 0.3200 0.5200 0.8000 1.1600

0.3600 0.4000 0.5200 0.7200 1.0000 1.3600

0.6400 0.6800 0.8000 1.0000 1.2800 1.6400

1.0000 1.0400 1.1600 1.3600 1.6400 2.0000

>> mesh(x, y, z)

37