Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие по радиохимии doc.doc
Скачиваний:
40
Добавлен:
13.09.2019
Размер:
1.25 Mб
Скачать

5. Адсорбция радиоактивных элементов.

5.1 Введение

В радиохимии очень важную роль играют адсорбционные процессы, нередко приводящие к значительному перераспределению ра­дионуклидов между раствором и образующейся или пред­варительно полученной твердой фазой (осадком), а также между раствором и контактирующими с ним материалами, такими как стекло, резина, металлы, пластики и др.

Сорбцией называется переход радионуклида из раствора на заранее сформированную твердую фазу, которая не претерпевает заметных изменений в течение сорбции.

Стабильную твердую фазу называют сорбентом, а распределяющееся вещество – сорбатом. Сорбирующие осадки могут быть веществами различной химической природы, и их объединяет единственное общее свойство- малая растворимость в водных растворах.

Чаще всего используют сульфаты, сульфиды, фосфаты, смешанные ферроцианиды, галогениды, фториды и другие трудно растворимые соли.

Разнообразие веществ, применяемых в качестве сорбентов, предопределяет и многообразие свойственных им типов сорбционных процессов. Общепризнанной классификации сорбционных процессов с участием различных коллекторов пока не существует. Можно, например, различать ионную, молекулярную и коллоидную адсорб­ции. В зависимости от природы адсорбента различают адсорбцию на полярных кристаллах, на стекле, бумаге, коллоидных и аморф­ных осадках, а также на угле и ионообменных смолах.

Наиболее разработанной является теория сорбции на кристаллических осадках.

5.2. Адсорбция радионуклидов на полярных кристаллах.

Первые систематические исследования в области адсорбции радиоактивных элементов на поверхности кристаллических осадков были выполнены К. Фаянсом и Ф. Панетом, которые сформулировали эмпирические правила соосаждения и адсорб­ции ( см. лекцию по соосаждению).

По правилу соосаждения, сформулированному К. Фаянсом, чем меньше растворимость соединения, образуемого радиоак­тивным элементом с противоположно заряженным ионом осадка, тем большее количество этого элемента захватывается осадком.

Закономерности, управляющие захватом микроколичеств ра­диоактивных элементов при образовании в растворах различ­ного рода твердых фаз, были применены Ф. Панетом для слу­чая адсорбции на предварительно приготовленных осадках. Правило адсорбции, сформулированное Ф. Панетом, по сути дела не отличается от правила соосаждения Фаянса, вследствие чего их обычно объединяют под общим названием правила со­осаждения и адсорбции Фаянса — Панета, Это объединенное правило можно сформулировать следующим образом: радио­активный элемент, находящийся в форме катиона или аниона тем сильнее адсорбируется выделяющимся или заранее приго­товленным осадком, чем меньше растворимо соединение, кото­рое образует этот элемент с противоположно заряженной частью осадка.

Однако со временем были установлены такие факты, которые находились в явном противоречии с этим правилом. В частности, было установлено, что на величину адсорбции радиоактивных элементов сильное влияние оказы­вает, помимо растворимости, знак заряда поверхности осадка. Так, положительно заряженные золи галогенидов серебра не адсорбируют заметным образом положительно заряженных ионов свинца (ТЬВ). Наоборот, золи отрицательно заряженных галогенидов серебра адсорбируют ТЬВ, причем величина ад­сорбции растет с увеличением отрицательного заряда частиц адсорбента.

Отмеченные выше факты побудили О. Хана сформулиро­вать правило адсорбции, учитывающее влияние не только малой растворимости, но и знака заряда поверхности осадка. Однако, как показали дальнейшие исследования правила Фаянса — Панета — Хана носят чисто качественный ха­рактер и не учитывают возможности проявления различных ви­дов адсорбционных процессов, каждый из которых имеет свои особенности. В частности было установлено, что радионуклид может адсорбироваться и на одноименно заряженных поверхностях. В то же время иногда радионуклид не адсорбировался и на противоположно заряженных кристаллах.

Первое количественное описание адсорбционных явлений в радио­химии и их классификацию дал в своих работах А. П. Ратнер. Согласно классификации Ратнера, адсорбционные процессы на гетерополярных кристаллах по характеру адсорбированных ионов и природе адсорбционных сил могут быть сведены к двум группам: к первичной и вторичной адсорбции.

В случае первичной адсорбции адсорбированные ионы вхо­дят в состав кристаллической решетки адсорбента. Первичная адсорбция подразделяется на первичную потенциалобразующую и первичную обменную.

В случае вторичной адсорбции адсорбированные ионы не входят в состав кристаллической решетки, а остаются в прилегающем к кристаллу тонком слое раствора. Вторичная адсорбция также делится на два вида: обменную и ван-дер-ваальсовскую. Вторичная обменная адсорбция обусловлена ионным обменом и электростатическим взаимодействием во внеш­ней обкладке двойного слоя. Ван-дер-ваальсовская вторичная ад­сорбция связана с обменом адсорбированных молекул воды с иона­ми обоего знака в эквивалентных количествах.

При адсорбции радиоактивных элементов потенциалобразующая и ван-дер-ваальсовская адсорбция практически не имеют значения, так как обычно радиоактивный элемент находится в микроконцентра­циях и поэтому не может создать потенциалобразующий слой.

Следует отметить, что, кроме первичной и вторичной адсорб­ции ионов, существует малоизученная форма адсорбции по всему объему кристалла, называемая внутренней адсорбцией. Внутренняя адсорбция может происходить, когда соосаждаемые радиоактивные и макроэлементы не изоморфны, но обладают сходной кристалли­ческой структурой. Такая адсорбция с количественной стороны характеризуется константой фракционирования, являющийся по­стоянной величиной при постоянной концентрации радиоактивного элемента и уменьшающейся с ростом последней.

Первое обстоятельство сближает внутреннюю адсорбцию с сокристаллизацией, а второе обстоятельство — различает их. Кон­станта фракционирования в сильной степени зависит от присутствия многовалентных катионов. При внутреннеадсорбционных процес­сах термодинамическое равновесие устанавливается достаточно быстро. Впервые явление внутренней адсорбции было обнаружено Ханом при соосаждении микроколичества свинца (ТЬВ), радия (ТЬХ) и полония с хроматами и сульфатами щелочных металлов.

Исходя из конкретных представлений о причинах возникно­вения отдельных видов адсорбционных явлений, А. П. Ратнер вывел ряд полуколичественных соотношений, описывающих про­цессы адсорбции радиоактивных элементов.

В основе теории адсорбции на кристаллических осадках лежит понятие о двойном электрическом слое, возни­кающем на границе раздела «раствор электролита — ионный кристалл или металл». Он характеризуется разностью потенциалов, ко­торая зависит от активности электролита и описывается уравнени­ем Нернста.

Двойной электрический слой на ионных кристаллах образуется следующим образом. Поверхность такого кристалла состоит из положительных и отрицательных ионов, находящихся в равновесии с соответствующими ионами раствора. Благодаря статистическим флюктуациям на отдельных участках поверхности кристаллов по­является избыточный заряд, который компенсируется зарядом ионов раствора, образующих на поверхности адсорбента внутрен­нюю обкладку двойного слоя. Внешняя обкладка двойного элект­рического слоя составлена из ионов раствора, имеющих заряд, противоположный заряду поверхности.

Первым экспериментальным доказательством того, что адсорбция связана с образовани­ем двойного электрического слоя, была работа по изучению адсорбции 212 РЬ (ТhВ) на осад­ках йодистого серебра в при­сутствии избытка нитрата серебра или йодида калия в растворе. Было установлено, что при избытке KJ в растворе внутренняя обкладка двойного слоя состоит из ионов J- так как она всегда образует­ся одним из ионов, входящих в состав осадка. Поверхность кристалла AgJ имеет отрицатель­ный заряд. Во внешнем диффу­зионном слое находятся ионы К+, называемые компенсирующими ионами. Картина меняется на обратную, если в растворе име­ется избыток азотнокислого се­ребра. В этом случае поверх­ность кристалла AgJ заряжается положительно за счет адсорбции ионов Аg+, а компенсирующими ионами являются анионы NО3 -.