Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Розширений електронний конспект з курсу ІАД, 20...doc
Скачиваний:
76
Добавлен:
13.09.2019
Размер:
1.52 Mб
Скачать

3. Нейронні мережі. Визначення та еволюція нейронних мереж

Нейронна мережа (Neural Network, нейромережа) є програмно- або апаратно реалізованою системою, в основу якої покладена математична модель процесів передавання і оброблення імпульсів мозку людини, що імітує механізм взаємодії нейронів (neuron) з метою опрацювання вхідної інформації, навчання та отримання досвіду.

Інакше кажучи, в НМ проводиться комп’ютеризована імітація інтелектуального режиму поведінки людини. Ключовим аспектом штучних нейромереж є їх здатність навчатися в процесі розв’язання задач, наприклад, розпізнавання образів.

Еволюція штучних нейронних систем проходила протягом більше ніж двох тисяч років. Однак найбільші дослідження з розроблення функції простого нейрона були проведені в кінці 30-х років ХХ століття Уореном Мак-Каллоком і Уолтером Піттсом, що може розглядатися як реальна стартова точка в даній галузі знань. 1943 року ці автори опублікували свої результати в книзі «Логічне числення ідей, що стосуються нервової діяльності». Згідно з теорією Мак-Каллока і Піттса, виведення даних від нейрона має математичне значення, що дорівнює зваженій сумі введень. Хоч і було доведено, що ці прості нейрони можуть бути відмінними обчислювальними пристроями, коли використовуються відповідні ваги, відчувалася відсутність універсального правила навчання, тобто методу для регулювання ваг у нейронних функціях.

Першим нейрокомп’ютером (neurocomputer) можна вважати пристрій «Snark», який розробив М. Мінський (Marvin Minsky) на початку 50-х років ХХ ст., що розглядається багатьма вченими як перший комп’ютерний аналог людського мозку. Хоча з технічного боку пристрій мав певний успіх, проте він був неспроможним виконати будь-яку значну функцію з оброблення інформації.

Сучасні інструментальні засоби нейромереж використовуються для сприймання інформації за допомогою вивчення взірців (шаблонів) і потім застосовування їх з метою передбачення майбутніх зв’язків або відношень.

Нейромережі є найзагальнішим типом методики дейтамайнінгу, причому деякі люди навіть вважають, що використання нейромереж є єдиним типом дейтамайнінгу.

Нейромережі навчаються створювати взірці безпосередньо з даних за допомогою повторного їх вивчення, щоб ідентифікувати зв’язки і побудувати модель. Вони будують моделі методом проб і помилок. Мережа підбирає значення параметра шляхом зіставлення з фактичною величиною. Якщо приблизна оцінка вихідного параметра неправильна, то модель регулюється. Цей процес включає три ітеративні кроки: передбачення, порівняння і пристосування (або корегування). Нейромережі досить просто застосовуються з метою класифікування даних і для передбачень. При цьому вхідні дані комбінуються і зважуються, на основі чого генеруються вихідні значення.

Передусім, коли йдеться про нейронні мережі, то частіше маються на увазі штучні нейронні мережі. Деякі з них моделюють біологічні нейронні мережі, а деякі — ні. Однак історично склалося так, що перші штучні нейронні мережі були створені внаслідок спроб створити комп’ютерну модель, що відтворює діяльність мозку в спрощеній формі. Звичайно, можливості людського мозку незмірно більші, ніж можливості самої потужної штучної нейронної мережі.

Сучасні нейромережі мають низку властивостей, характерних для біологічних нейромереж, у тому числі й людського мозку.