
- •Белгородский государственный университет Экономический факультет Кафедра экономики и управления на предприятии
- •Рабочая программа исциплины «материаловедение»
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •3. Объем дисциплины и виды учебной работы
- •Содержание разделов дисциплины
- •Использования материалов
- •4.1. Темы семинарских занятий
- •Тема: Неметаллические материалы
- •Экзаменационные вопросы по дисциплине «Материаловедение»:
- •7. Учебно-методическое обеспечение курса
- •7.1. Рекомендуемая литература (основная):
- •8. Форма итогового контроля
- •9. Методические рекомендации по организации изучения дисциплины:
- •Учебно-практическое пособие Введение
- •Глава 1. Строение и основные свойства металлов
- •1.1.Кристаллическое строение твердых тел
- •1.2. Кристаллизация
- •1.3. Дефекты кристаллической решетки
- •1.3.1. Точечные дефекты
- •1.3.2. Линейные дефекты кристаллической решетки
- •1.3.3. Поверхностные дефекты
- •1.4. Методы изучения структуры металлов
- •Контрольные вопросы:
- •1.5. Свойства металлов и сплавов
- •1.5.1. Физические свойства
- •1.5.2. Химические свойства
- •1.5.3. Методы защиты от коррозии
- •1.5.4. Биокоррозия
- •Контрольные вопросы:
- •1.5.5. Механические свойства
- •1.5.6.Теоретическая и техническая прочность
- •1.5.7.Технологические и эксплутационные свойства
- •Эксплуатационные свойства определяют в зависимости от условий работы машины специальными испытаниями. Одним из важнейших эксплуатационных свойств является износостойкость.
- •Контрольные вопросы:
- •Глава 2. Классификация материалов
- •Металлический тип связи характерен для более чем 80 элементов таблицы Менделеева.
- •Контрольные вопросы:
- •Глава 3. Черные металлы и сплавы
- •3.1. Строение и свойства сплавов
- •Сплавы на основе железа. Компоненты и фазы системы железо - углерод
- •3.3. Основные типы диаграмм состояния
- •Контрольные вопросы:
- •Глава 4. Углеродистые и легированные стали и чугуны
- •4.1.Конструкционные стали
- •4.1.1. Конструкционные углеродистые стали
- •4.1.2. Конструкционные легированные стали
- •4.1.3. Специальные легированные конструкционные стали
- •4.2. Инструментальные стали
- •4.3.Стали и сплавы с особыми физическими свойствами
- •4.3. Чугуны
- •Контрольные вопросы:
- •Глава 5. Термическая и химико-термическая обработка сплавов
- •Контрольные вопросы:
- •Глава 6. Цветные металлы и сплавы
- •6.1.Алюминий и его сплавы
- •Алюминиевые сплавы делятся на деформируемые и литейные.
- •Контрольные вопросы:
- •6.2. Медь и ее сплавы
- •Медно-никелевые сплавы - это сплавы на основе меди, в которых основным легирующим компонентом является никель - это куанали, мельхиор, нейзильбер, манганин, копель и т.Д.
- •Контрольные вопросы:
- •6.3. Никель и его сплавы
- •Контрольные вопросы:
- •Глава 7. Неметаллические материалы
- •7.1.Высокомолекулярные соединения (Полимеры)
- •Контрольные вопросы:
- •7.1.1. Пластмассы или пластики
- •Контрольные вопросы:
- •7.1.2. Эластомеры (каучуки и резины)
- •Контрольные вопросы:
- •7.1.3.Химические волокна
- •Контрольные вопросы:
- •Полимерные покрытия (пленкообразующие): лаки, эмали, краски, компаунды
- •Контрольные вопросы:
- •7.1.5. Пленкообразующие материалы: клеи и герметики
- •Контрольные вопросы:
- •Глава 8. Керамические материалы
- •8.1.Строительная керамика
- •8.2. Огнеупорные керамические материалы
- •8.3. Кислотоупорные керамические соединения
- •8.4. Тонкая керамика
- •8.5. Керамика как облицовочный строительный материал
- •8.5.1.Керамические изделия, используемые в декоративной отделке зданий и сооружений
- •8.5.2. Виды керамической плитки
- •8.6. Керамическая черепица
- •8.7. Вяжущие вещества
- •Кислотоcтойкие вяжущие вещества. Эти вещества разделяются на кислотоупорные цементы и замазки.
- •8.8. Стекло
- •8.8.1. Ситаллы
- •Глава 9. Композиционные материалы
- •9.1. Композиционные материалы с металлической матрицей
- •9.2.Композиционные материалы с неметаллической матрицей
- •9.3. Композиционные материалы в строительстве.
- •Глоссарий
- •Глава 1. Строение и основные свойства металлов
- •1.1.Кристаллическое строение твердых тел 12
- •1.2. Кристаллизация 14
- •Глава 2 . Классификация материалов 40
- •Глава 3 . Черные металлы и сплавы 45
- •Глава 4. Углеродистые и легированные стали и чугуны 57
- •7.1.1.Пластмассы или пластики 115
- •7.1.5 Пленкообразующие материалы: клеи и герметики 148
- •8.5. Керамика как облицовочный строительный материал 166
- •Глава 9. Композиционные материалы. 188
9.1. Композиционные материалы с металлической матрицей
Композиционные материалы с металлической матрицей состоят из металлической матрицы (чаще А1, Мg, Ni и их сплавы), упроченной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое.
Волокнистые композиционные материалы. На рис. 9.3. приведены схемы армирования волокнистых композиционных материалов.
Рис. 9.3.. Схема структуры и армирования непрерывными волокнами композиционных материалов: а – зернистый (дисперсно-упрочненный) материал;
б – дискретный волокнистый композиционный материал; в – непрерывно волокнистый композиционный материал; г - непрерывная укладка волокон;
е - двухмерная укладка волокон; ж - объемная укладка волокон.
Композиционные материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и пределами выносливости (на 50-100%), модуля упругости, коэффициента жесткости и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении металлоемкости.
Прочность композиционных (волокнистых) материалов определяется свойствами волокон; матрица в основном должна перераспределять напряжения между армирующими элементами. Поэтому прочность и модуль упругости волокон должны быть значительно больше, чем прочность и модуль упругости матрицы. Жесткие армирующие волокна воспринимают напряжения, возникающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.
Для упрочнения алюминия, магия и их сплавов применяют борные и углеродные волокна, а также волокна из тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модуль упругости. Нередко используют в качестве волокон проволоку из высокопрочных сталей.
Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана.
Повышение жаропрочности никелевых сплавов достигается армирова-нием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводность.
Перспективными упрочнениями для высокопрочных и высокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбида бора и др.
Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, диборида.титана и оксида алюминия значительно повышает жаропрочность.
Композиционные материалы на металлической основе обладают высокой прочностью, но в то же время они малопластичны. Однако волокна в композиционных материалах уменьшают скорость распространения трещин, зарождающихся в матрице, и практически полностью исключают внезапное хрупкое разрушение. Отличительной особенностью волокнистых композиционных материалов являются анизотропия механических свойств вдоль и поперек волокон и малая чувствительность к концентраторам напряжения. Анизотропия свойств волокнистых композиционных материалов учитывается при конструировании деталей.
Матрица и волокно не должны между собой взаимодействовать (должна отсутствовать взаимная диффузия) при изготовлении или эксплуатации, так как это может привести к понижению прочности композиционного материала.
Основным недостатком композиционных материалов с одно- и двумерным армированием является низкое сопротивление межслойному сдвигу и поперечному обрыву. Этого недостатка лишены материалы с трехмерным армированием.
Дисперсионно-упрочненные композиционные материалы. В отличие от волокнистых композиционных материалов в дисперсионно-упрочненных композиционных материалах матрица является основным элементом, несущим нагрузку, а дисперсные частицы тормозят движение в ней дислокаций. Высокая прочность достигается при размере частиц 10-500 нм при среднем расстоянии между ними 100-500 нм и равномерном распределении их в матрице.
Использование в качестве упрочняющих фаз стабильных тугоплавких соединений (оксиды тория, гафния, иттрия, сложные соединения оксидов и редкоземельных металлов), не растворяющихся в матричном металле, позволяет сохранить высокую прочность материала. В связи с этим такие материалы чаще применяются как жаропрочные. Дисперсно-упрочненные композиционные материалы могут быть получены на основе большинства применяемых в технике металлов и сплавов.
Наиболее широко используют сплавы на основе алюминия — САП (спеченный алюминиевый порошок) (см. раздел «Алюминий и его сплавы»).
Большие перспективы у никелевых дисперсионно-упрочненных материалов. Наиболее высокую жаропрочность имеют сплавы на основе никеля с 2-3 об.% двуоксида тория или двуоксида гафния. Широкое применение получили сплавы ВДУ-1 (никель, упрочненный двуокисью тория), ВДУ-2 (никель, упрочненный двуокисью гафния) и ВД-3 (матрица Ni + 20% Сг, упрочненная окисью тория). Эти сплавы обладают высокой жаропрочностью. Дисперсионно-упрочненные композиционные материалы, так же как и волокнистые, стойки к разрушению с повышением температуры и длительности выдержки при данной температуре.
Области применения этих композиционных материалов не ограничены. Они применяются в авиации для высоконагруженных деталей самолетов (обшивки, лонжеронов, нервюр, панелей и т. д.) и двигателей (лопаток компрессора и турбины и т. д.), в космической технике для узлов силовых конструкций аппаратов, подвергающихся нагреву, для элементов жёсткости, панелей в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов, бамперов и т. д.), в гражданском строительстве (пролеты мостов, элементы сборных конструкций высотных сооружений и т. д.) и в других областях народного хозяйства.