- •Теоретическая механика
- •653500 «Строительство»
- •Введение
- •Программа дисциплины «теоретическая механика»
- •Требования
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •Общие положения
- •Рекомендуется следующий порядок решения контрольных работ
- •Программа раздела «динамика»
- •1. Динамика точки
- •1.1. Введение в динамику точки
- •1.2. Основные понятия и определения
- •1.3. Основные законы механики
- •1.4. Дифференциальные уравнения движения несвободной материальной точки в декартовой системе отсчета
- •1.5. Дифференциальные уравнения движения несвободной материальной точки в естественных координатных осях
- •1.6. Задачи динамики точки
- •1.7. Алгоритм решения первых задач динамики точки в декартовой системе отсчета
- •1.8. Пример решения первой задачи динамики точки в декартовой системе отсчета
- •1.9. Алгоритм решения первых задач динамики точки в естественных координатных осях
- •1.10. Пример решения первой задачи динамики точки в естественных координатных осях
- •1.11. Алгоритм решения вторых задач динамики точки в декартовой системе отсчета
- •Варианты 6 – 10 (рис. 1.10)
- •Варианты 11 – 15 (рис. 1.11)
- •В Рис. 1.12 арианты 16 – 20 (рис. 1.12)
- •Варианты 21 – 25 (рис. 1.13)
- •Варианты 26 – 30 (рис. 1.14)
- •1.13. Пример выполнения курсового задания д 1
- •Вопросы и задания для самоконтроля
- •2. Колебательное движение точки и тела
- •2.1. Виды колебательных движений материальной точки
- •2.2. Свободные колебания материальной точки
- •2.3. Дифференциальное уравнение движения точки под действием постоянной системы сил, восстанавливающей силы и силы сопротивления движению
- •2.4. Затухающие колебания материальной точки
- •2.5. Апериодическое движение точки
- •2.6. Вынужденные колебания материальной точки под действием постоянной системы сил, восстанавливающей силы и возмущающей силы
- •2.7. Влияние сопротивлений движению на вынужденные колебания материальной точки
- •2.8. Алгоритм решения задач на колебания материальной точки
- •2.9. Пример решения задачи на свободные колебания груза по гладкой наклонной поверхности
- •Вопросы и задания для самоконтроля
- •3.2. Частные случаи относительного движения материальной точки
- •3.3. Принцип относительности классической механики. Инерциальные системы отсчета
- •3.4. Алгоритм решения задач на динамику относительного движения материальной точки
- •3.5. Варианты курсового задания д 2 «Исследование относительного движения материальной точки»
- •3.6. Пример выполнения курсового задания д 2
- •Вопросы и задания для самоконтроля
- •4. Геометрия масс механической системы
- •4.1. Центр масс механической системы
- •4.2. Алгоритм определения кинематических характеристик центра масс механической системы
- •4.3. Моменты инерции твердого тела. Радиус инерции
- •Вопросы и задания для самоконтроля
- •5. Общие теоремы динамики
- •5.1. Теорема о движении центра масс механической системы
- •Следствия из теоремы о движении центра масс
- •Вопросы и задания для самоконтроля
- •5.2. Теоремы об изменении количества движения материальной точки и количества движения механической системы
- •5.2.1. Теорема об изменении количества движения
- •5.2.2. Теорема об изменении количества движения
- •Следствия из теоремы
- •Вопросы и задания для самоконтроля
- •5.3. Теоремы об изменении момента количества
- •5.3.1. Моменты количества движения
- •5.3.2. Теорема об изменении момента количества
- •Следствия из теоремы
- •5.3.3. Кинетический момент механической
- •5.3.4. Теорема об изменении кинетического
- •Следствия из теоремы
- •5.3.5. Варианты курсового задания д 3
- •5.3.6. Пример выполнения курсового задания д 3
- •Вопросы и задания для самоконтроля
- •5.4. Динамика движений твердого тела
- •5.4.1. Динамика поступательного движения твердого тела
- •5.4.2. Динамика вращательного движения твердого тела
- •5.4.3. Динамика плоскопараллельного движения
- •Вопросы и задания для самоконтроля
- •5.5. Теорема об изменении кинетической энергии
- •5.5.1. Работа силы на перемещении точки ее приложения
- •5.5.2. Кинетическая энергия механической системы
- •5.5.3. Варианты курсового задания д 4
- •5.5.4. Пример выполнения курсового задания д 4
- •Вопросы и задания для самоконтроля
- •5.6. Принцип Даламбера для материальной точки и механической системы
- •5.6.1. Принцип Даламбера для несвободной
- •5.6.2. Принцип Даламбера для несвободной
- •5.6.3. Приведение сил инерции точек твердого
- •5.6.4. Варианты курсового задания д 5
- •5.6.5. Пример выполнения курсового задания д 5
- •Вопросы и задания для самоконтроля
- •6. Основные начала аналитической механики
- •6.1. Обобщенные координаты и возможные перемещения тел и точек механической системы
- •6.2. Связи и их классификация. Идеальные связи
- •6.3. Принцип возможных перемещений
- •6.3.1. Варианты курсового задания д 6
- •6.3.2. Пример выполнения курсового задания д 6
- •6.3.4. Пример выполнения курсового задания д 7
- •Вопросы и задания для самоконтроля
- •6.4. Общее уравнение динамики
- •6.4.1. Общее уравнение динамики механической системы
- •6.4.2. Варианты курсового задания д 8
- •6.4.3. Пример выполнения курсового задания д 8
- •Вопросы и задания для самоконтроля
- •6.5. Уравнения Лагранжа второго рода
- •Вопросы и задания экзаменационных билетов
- •Пример ответа на экзаменационный билет
- •Решение
- •Решение
- •Уравнения динамического равновесия:
- •Билет № 2
- •Билет № 3
- •Билет № 4
- •Билет № 5
- •Билет № 6
- •Билет № 7
- •Билет № 8
- •Билет № 9
- •Билет № 10
- •Билет № 11
- •Билет № 12
- •Билет № 13
- •Билет № 14
- •Билет № 15
- •Билет № 16
- •Билет № 17
- •Билет № 18
- •Билет № 19
- •Билет № 20
- •Оглавление
- •Для заметок Для заметок Для заметок
- •644099, Омск, ул. П. Некрасова, 10
- •644080, Омск, пр. Мира, 5
1.3. Основные законы механики
В основе динамики лежат законы, впервые сформулированные Ньютоном. Законы классической механики многократно подтверждены опытами и наблюдениями и являются объективными законами природы.
1. Закон инерции. Материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока действие других сил не изменит это состояние.
Закон инерции характеризует стремление тела сохранить неизменной скорость своего движения или, иначе говоря, сохранить приобретенное им ранее механическое движение. Это свойство называют его инертностью. Для поступательно движущегося твердого тела мерой его инертности является масса m, измеряемая в кг. В классической механике масса движущегося тела принимается равной массе покоящегося тела, т. е. она рассматривается как постоянная величина. При вращательном движении твердого тела мерой его инертности является момент инерции относительно оси вращения, измеряемый в кг·м2.
2. Закон пропорциональности силы и ускорения. Ускорение материальной точки пропорционально приложенной к ней силе и имеет одинаковое с ней направление.
Закон пропорциональности силы Р и ускорения а устанавливает в векторной форме зависимость, характеризующую изменение скорости V движения материальной точки под действием силы. Этот закон выражается формулой
ma = P.
И
Рис. 1.1
На рис. 1.1 использованы обозначения: Fi – i -я активная сила; Ri – i -я реакция внешней связи.
С учетом изложенного выше второй закон динамики описан формулой
ma = P = ΣFi + ΣRi.
В общем случае для несвободной материальной точки второй закон динамики может быть изложен в следующей редакции.
Вектор ma, определяемый произведением массы m точки на ее ускорение a, равен геометрической сумме активных сил Fi и реакций Ri внешних связей, приложенных к точке.
Если рассматривается движение свободной материальной точки, то последнее выражение приобретает следующий вид:
ma = P = ΣFi.
Вектор ma, определяемый произведением массы m точки на ее ускорение a, равен геометрической сумме активных сил Fi.
Второй закон динамики часто называют основным уравнением динамики.
Из второго закона динамики следует, что, если геометрическая сумма активных сил и реакций внешних связей, действующих на точку, равна нулю (ΣFi + ΣRi = 0), то ускорение точки равно нулю (а = 0), т. е. (точка или тело) движется прямолинейно и равномерно или находится в состоянии покоя.
Систему отсчета, в которой проявляются первый и второй законы динамики, называют инерциальной системой отсчета.
Инерциальная система отсчета – система отсчета, по отношению к которой изолированная материальная точка находится в покое или движется равномерно и прямолинейно.
Система отсчета, не обладающая этим свойством, называется неинерциальной системой отсчета.
Для большинства задач за инерциальную систему отсчета принимают систему координатных осей, связанных с Землей.
3. Закон равенства действия и противодействия. Всякому действию соответствует равное и противоположно направленное противодействие.
Третий закон отражает двусторонность механических процессов природы. Он устанавливает, что при взаимодействии двух тел силы, приложенные к каждому из них, равны по модулю и направлены по одной прямой в противоположные стороны. Будучи приложенными к разным телам, эти силы не уравновешиваются. При рассмотрении движения материальной точки этот закон механики справедлив не только в инерциальной, но и в неинерциальной системах отсчета.
4. Закон независимости действия сил. Несколько одновременно действующих на материальную точку сил сообщают точке такое ускорение, которое сообщила бы ей одна сила, равная их геометрической сумме.
Этот закон утверждает, что ускорение а, получаемое материальной точкой от одновременно действующей на нее системы сил, равно геометрической сумме ускорений аi, сообщаемых этой точке каждой из сил в отдельности.
Необходимо еще раз подчеркнуть, что законы классической механики многократно подтверждены опытами и наблюдениями. На этих законах базируются многие технические дисциплины: теория механизмов и машин; сопротивление материалов; детали машин и т. д., изучаемые в высших учебных заведениях.
