- •Теоретическая механика
- •653500 «Строительство»
- •Введение
- •Программа дисциплины «теоретическая механика»
- •Требования
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •Общие положения
- •Рекомендуется следующий порядок решения контрольных работ
- •Программа раздела «динамика»
- •1. Динамика точки
- •1.1. Введение в динамику точки
- •1.2. Основные понятия и определения
- •1.3. Основные законы механики
- •1.4. Дифференциальные уравнения движения несвободной материальной точки в декартовой системе отсчета
- •1.5. Дифференциальные уравнения движения несвободной материальной точки в естественных координатных осях
- •1.6. Задачи динамики точки
- •1.7. Алгоритм решения первых задач динамики точки в декартовой системе отсчета
- •1.8. Пример решения первой задачи динамики точки в декартовой системе отсчета
- •1.9. Алгоритм решения первых задач динамики точки в естественных координатных осях
- •1.10. Пример решения первой задачи динамики точки в естественных координатных осях
- •1.11. Алгоритм решения вторых задач динамики точки в декартовой системе отсчета
- •Варианты 6 – 10 (рис. 1.10)
- •Варианты 11 – 15 (рис. 1.11)
- •В Рис. 1.12 арианты 16 – 20 (рис. 1.12)
- •Варианты 21 – 25 (рис. 1.13)
- •Варианты 26 – 30 (рис. 1.14)
- •1.13. Пример выполнения курсового задания д 1
- •Вопросы и задания для самоконтроля
- •2. Колебательное движение точки и тела
- •2.1. Виды колебательных движений материальной точки
- •2.2. Свободные колебания материальной точки
- •2.3. Дифференциальное уравнение движения точки под действием постоянной системы сил, восстанавливающей силы и силы сопротивления движению
- •2.4. Затухающие колебания материальной точки
- •2.5. Апериодическое движение точки
- •2.6. Вынужденные колебания материальной точки под действием постоянной системы сил, восстанавливающей силы и возмущающей силы
- •2.7. Влияние сопротивлений движению на вынужденные колебания материальной точки
- •2.8. Алгоритм решения задач на колебания материальной точки
- •2.9. Пример решения задачи на свободные колебания груза по гладкой наклонной поверхности
- •Вопросы и задания для самоконтроля
- •3.2. Частные случаи относительного движения материальной точки
- •3.3. Принцип относительности классической механики. Инерциальные системы отсчета
- •3.4. Алгоритм решения задач на динамику относительного движения материальной точки
- •3.5. Варианты курсового задания д 2 «Исследование относительного движения материальной точки»
- •3.6. Пример выполнения курсового задания д 2
- •Вопросы и задания для самоконтроля
- •4. Геометрия масс механической системы
- •4.1. Центр масс механической системы
- •4.2. Алгоритм определения кинематических характеристик центра масс механической системы
- •4.3. Моменты инерции твердого тела. Радиус инерции
- •Вопросы и задания для самоконтроля
- •5. Общие теоремы динамики
- •5.1. Теорема о движении центра масс механической системы
- •Следствия из теоремы о движении центра масс
- •Вопросы и задания для самоконтроля
- •5.2. Теоремы об изменении количества движения материальной точки и количества движения механической системы
- •5.2.1. Теорема об изменении количества движения
- •5.2.2. Теорема об изменении количества движения
- •Следствия из теоремы
- •Вопросы и задания для самоконтроля
- •5.3. Теоремы об изменении момента количества
- •5.3.1. Моменты количества движения
- •5.3.2. Теорема об изменении момента количества
- •Следствия из теоремы
- •5.3.3. Кинетический момент механической
- •5.3.4. Теорема об изменении кинетического
- •Следствия из теоремы
- •5.3.5. Варианты курсового задания д 3
- •5.3.6. Пример выполнения курсового задания д 3
- •Вопросы и задания для самоконтроля
- •5.4. Динамика движений твердого тела
- •5.4.1. Динамика поступательного движения твердого тела
- •5.4.2. Динамика вращательного движения твердого тела
- •5.4.3. Динамика плоскопараллельного движения
- •Вопросы и задания для самоконтроля
- •5.5. Теорема об изменении кинетической энергии
- •5.5.1. Работа силы на перемещении точки ее приложения
- •5.5.2. Кинетическая энергия механической системы
- •5.5.3. Варианты курсового задания д 4
- •5.5.4. Пример выполнения курсового задания д 4
- •Вопросы и задания для самоконтроля
- •5.6. Принцип Даламбера для материальной точки и механической системы
- •5.6.1. Принцип Даламбера для несвободной
- •5.6.2. Принцип Даламбера для несвободной
- •5.6.3. Приведение сил инерции точек твердого
- •5.6.4. Варианты курсового задания д 5
- •5.6.5. Пример выполнения курсового задания д 5
- •Вопросы и задания для самоконтроля
- •6. Основные начала аналитической механики
- •6.1. Обобщенные координаты и возможные перемещения тел и точек механической системы
- •6.2. Связи и их классификация. Идеальные связи
- •6.3. Принцип возможных перемещений
- •6.3.1. Варианты курсового задания д 6
- •6.3.2. Пример выполнения курсового задания д 6
- •6.3.4. Пример выполнения курсового задания д 7
- •Вопросы и задания для самоконтроля
- •6.4. Общее уравнение динамики
- •6.4.1. Общее уравнение динамики механической системы
- •6.4.2. Варианты курсового задания д 8
- •6.4.3. Пример выполнения курсового задания д 8
- •Вопросы и задания для самоконтроля
- •6.5. Уравнения Лагранжа второго рода
- •Вопросы и задания экзаменационных билетов
- •Пример ответа на экзаменационный билет
- •Решение
- •Решение
- •Уравнения динамического равновесия:
- •Билет № 2
- •Билет № 3
- •Билет № 4
- •Билет № 5
- •Билет № 6
- •Билет № 7
- •Билет № 8
- •Билет № 9
- •Билет № 10
- •Билет № 11
- •Билет № 12
- •Билет № 13
- •Билет № 14
- •Билет № 15
- •Билет № 16
- •Билет № 17
- •Билет № 18
- •Билет № 19
- •Билет № 20
- •Оглавление
- •Для заметок Для заметок Для заметок
- •644099, Омск, ул. П. Некрасова, 10
- •644080, Омск, пр. Мира, 5
5.5.2. Кинетическая энергия механической системы
В динамике рассматриваются два случая преобразования механического движения материальной точки или системы точек.
1. Механическое движение переносится с одной механической системы на другую в качестве механического движения.
2. Механическое движение превращается в другую форму движения материи (в форму потенциальной энергии, теплоты, электричества и т. д.).
Каждый из этих случаев преобразования механического движения имеет свои измерители как механического движения, так и действия силы.
Когда рассматривается преобразование механического движения без перехода его в другую форму движения, мерой механического движения является вектор количества движения материальной точки K = mV или механической системы K = mVс. Мерой действия силы в этом случае является вектор S импульса силы.
Когда механическое движение превращается в другую форму движения материи, в качестве меры механического движения выступает кинетическая энергия материальной точки или механической системы.
Кинетическая энергия материальной точки – скалярная мера механического движения, равная половине произведения массы точки на квадрат ее скорости движения.
Кинетическую энергию Т точки определяют по формуле
T = mV2/2.
Мерой действия силы при превращении механического движения в другую форму движения является работа силы.
Р
Рис. 5.24
На рис. 5.24 использованы следующие обозначения: mi, Vci – соответственно масса и скорость центра масс i-й точки механической системы; m, Vc – масса и скорость центра масс механической системы.
Кинетическая энергия системы – величина, равная сумме кинетических энергий всех материальных точек механической системы.
Кинетическую энергию механической системы Тs определяют по формуле
Тs = Σ Тi,
где Тi – кинетическая энергия i-й точки механической системы.
Тела, входящие в механическую систему, осуществляют следующие виды движений: поступательное, вращательное, плоскопараллельное. Определим кинетические энергии тел, находящихся в этих движениях.
Р
Рис. 5.25
Кинетическую энергию тела при таком движении определяют по формуле
T = m(Vc)2/2,
где Vc – скорость центра С масс тела.
Кинетическая энергия твердого тела, совершающего поступательное движение, равна половине произведения массы тела на квадрат скорости его центра масс.
При вращательных движениях тел (рис. 5.26) относительно различных осей (OX, OY, ОZ) кинетическую энергию определяют по формулам:
T = Joxω2/2; T = Joyω2/2; T = Jozω2/2,
где Jox, Joy, Joz – соответственно моменты инерции относительно осей вращения OX, OY, OZ; ω – угловая скорость вращения.
Рис. 5.26
Кинетическая энергия твердого тела, совершающего вращательное движение, равна половине произведения его момента инерции относительно соответствующей оси на квадрат угловой скорости.
К
Рис. 5.27
Исходя из изложенного, кинетическую энергию тела при плоскопараллельном движении определяют по формуле
T = m(Vc)2/2 + Jcz1ω2/2,
где Jcz1 – момент инерции тела относительно оси CZ1, проходящей через его центр масс.
Зависимость между изменением кинетической энергии неизменяемой механической системы и работой приложенных к ее точкам сил на некотором перемещении определяется формулой
Тsk
– Тsn
= Σ
,
где Тsk – кинетическая энергия механической системы в конечном положении;Тsn – кинетическая энергия механической системы в исходном положении; Σ – сумма работ внешних сил (активных сил и реакций внешних связей) на перемещении механической системы из начального положения в конечное положение.
Эта формула выражает теорему об изменении кинетической энергии механической системы.
Изменение кинетической энергии неизменяемой механической системы на некотором перемещении равно сумме работ внешних сил, приложенных к системе, на этом же перемещении.
Для закрепления изложенного теоретического материала учебным планом рекомендуется выполнить курсовое задание Д 4.
