
- •Теоретическая механика
- •653500 «Строительство»
- •Введение
- •Программа дисциплины «теоретическая механика»
- •Требования
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •Общие положения
- •Рекомендуется следующий порядок решения контрольных работ
- •Программа раздела «динамика»
- •1. Динамика точки
- •1.1. Введение в динамику точки
- •1.2. Основные понятия и определения
- •1.3. Основные законы механики
- •1.4. Дифференциальные уравнения движения несвободной материальной точки в декартовой системе отсчета
- •1.5. Дифференциальные уравнения движения несвободной материальной точки в естественных координатных осях
- •1.6. Задачи динамики точки
- •1.7. Алгоритм решения первых задач динамики точки в декартовой системе отсчета
- •1.8. Пример решения первой задачи динамики точки в декартовой системе отсчета
- •1.9. Алгоритм решения первых задач динамики точки в естественных координатных осях
- •1.10. Пример решения первой задачи динамики точки в естественных координатных осях
- •1.11. Алгоритм решения вторых задач динамики точки в декартовой системе отсчета
- •Варианты 6 – 10 (рис. 1.10)
- •Варианты 11 – 15 (рис. 1.11)
- •В Рис. 1.12 арианты 16 – 20 (рис. 1.12)
- •Варианты 21 – 25 (рис. 1.13)
- •Варианты 26 – 30 (рис. 1.14)
- •1.13. Пример выполнения курсового задания д 1
- •Вопросы и задания для самоконтроля
- •2. Колебательное движение точки и тела
- •2.1. Виды колебательных движений материальной точки
- •2.2. Свободные колебания материальной точки
- •2.3. Дифференциальное уравнение движения точки под действием постоянной системы сил, восстанавливающей силы и силы сопротивления движению
- •2.4. Затухающие колебания материальной точки
- •2.5. Апериодическое движение точки
- •2.6. Вынужденные колебания материальной точки под действием постоянной системы сил, восстанавливающей силы и возмущающей силы
- •2.7. Влияние сопротивлений движению на вынужденные колебания материальной точки
- •2.8. Алгоритм решения задач на колебания материальной точки
- •2.9. Пример решения задачи на свободные колебания груза по гладкой наклонной поверхности
- •Вопросы и задания для самоконтроля
- •3.2. Частные случаи относительного движения материальной точки
- •3.3. Принцип относительности классической механики. Инерциальные системы отсчета
- •3.4. Алгоритм решения задач на динамику относительного движения материальной точки
- •3.5. Варианты курсового задания д 2 «Исследование относительного движения материальной точки»
- •3.6. Пример выполнения курсового задания д 2
- •Вопросы и задания для самоконтроля
- •4. Геометрия масс механической системы
- •4.1. Центр масс механической системы
- •4.2. Алгоритм определения кинематических характеристик центра масс механической системы
- •4.3. Моменты инерции твердого тела. Радиус инерции
- •Вопросы и задания для самоконтроля
- •5. Общие теоремы динамики
- •5.1. Теорема о движении центра масс механической системы
- •Следствия из теоремы о движении центра масс
- •Вопросы и задания для самоконтроля
- •5.2. Теоремы об изменении количества движения материальной точки и количества движения механической системы
- •5.2.1. Теорема об изменении количества движения
- •5.2.2. Теорема об изменении количества движения
- •Следствия из теоремы
- •Вопросы и задания для самоконтроля
- •5.3. Теоремы об изменении момента количества
- •5.3.1. Моменты количества движения
- •5.3.2. Теорема об изменении момента количества
- •Следствия из теоремы
- •5.3.3. Кинетический момент механической
- •5.3.4. Теорема об изменении кинетического
- •Следствия из теоремы
- •5.3.5. Варианты курсового задания д 3
- •5.3.6. Пример выполнения курсового задания д 3
- •Вопросы и задания для самоконтроля
- •5.4. Динамика движений твердого тела
- •5.4.1. Динамика поступательного движения твердого тела
- •5.4.2. Динамика вращательного движения твердого тела
- •5.4.3. Динамика плоскопараллельного движения
- •Вопросы и задания для самоконтроля
- •5.5. Теорема об изменении кинетической энергии
- •5.5.1. Работа силы на перемещении точки ее приложения
- •5.5.2. Кинетическая энергия механической системы
- •5.5.3. Варианты курсового задания д 4
- •5.5.4. Пример выполнения курсового задания д 4
- •Вопросы и задания для самоконтроля
- •5.6. Принцип Даламбера для материальной точки и механической системы
- •5.6.1. Принцип Даламбера для несвободной
- •5.6.2. Принцип Даламбера для несвободной
- •5.6.3. Приведение сил инерции точек твердого
- •5.6.4. Варианты курсового задания д 5
- •5.6.5. Пример выполнения курсового задания д 5
- •Вопросы и задания для самоконтроля
- •6. Основные начала аналитической механики
- •6.1. Обобщенные координаты и возможные перемещения тел и точек механической системы
- •6.2. Связи и их классификация. Идеальные связи
- •6.3. Принцип возможных перемещений
- •6.3.1. Варианты курсового задания д 6
- •6.3.2. Пример выполнения курсового задания д 6
- •6.3.4. Пример выполнения курсового задания д 7
- •Вопросы и задания для самоконтроля
- •6.4. Общее уравнение динамики
- •6.4.1. Общее уравнение динамики механической системы
- •6.4.2. Варианты курсового задания д 8
- •6.4.3. Пример выполнения курсового задания д 8
- •Вопросы и задания для самоконтроля
- •6.5. Уравнения Лагранжа второго рода
- •Вопросы и задания экзаменационных билетов
- •Пример ответа на экзаменационный билет
- •Решение
- •Решение
- •Уравнения динамического равновесия:
- •Билет № 2
- •Билет № 3
- •Билет № 4
- •Билет № 5
- •Билет № 6
- •Билет № 7
- •Билет № 8
- •Билет № 9
- •Билет № 10
- •Билет № 11
- •Билет № 12
- •Билет № 13
- •Билет № 14
- •Билет № 15
- •Билет № 16
- •Билет № 17
- •Билет № 18
- •Билет № 19
- •Билет № 20
- •Оглавление
- •Для заметок Для заметок Для заметок
- •644099, Омск, ул. П. Некрасова, 10
- •644080, Омск, пр. Мира, 5
Вопросы и задания для самоконтроля
Сформулировать определение понятия «момент количества движения точки относительно произвольного центра».
Сформулировать определение понятия «плечо вектора количества движения точки относительно произвольного центра».
Сформулировать определение понятия «момент количества движения точки относительно оси».
Записать формулы для определения моментов количества движения точки относительно координатных осей.
Записать в векторной форме формулу, выражающую теорему об изменении момента количества движения материальной точки.
Записать в скалярном виде формулу, выражающую теорему об изменении момента количества движения материальной точки.
Сформулировать определение понятия «центральная сила».
Сформулировать определение понятия «кинетический момент механической системы относительно центра».
Сформулировать определение понятия «кинетический момент механической системы относительно оси».
Записать в скалярном виде формулы, выражающие теорему об изменении кинетического момента механической системы относительно координатных осей.
Сформулировать следствия из теоремы об изменении кинетического момента механической системы относительно координатных осей.
5.4. Динамика движений твердого тела
5.4.1. Динамика поступательного движения твердого тела
Поступательным движением твердого тела называют такое его движение, при котором любая прямая линия, проведенная на теле, остается во все время движения параллельной своему начальному положению.
Рассмотрим поступательное движение твердого тела на плоскости в инерциальной системе отсчета OXY под действием активных сил и реакций внешних связей (рис. 5.16).
Рис. 5.16
Из курса кинематики известно, что при поступательном движении твердого тела траектории всех его точек одинаковы (при наложении друг на друга траектории движения точек совпадают), а скорости и ускорения всех точек геометрически равны.
Эти свойства позволяют свести изучение поступательного движения твердого тела к изучению движения его отдельной точки. За такую точку, как правило, выбирают центр масс твердого тела.
Выражения xc = f1(t), yс = f2(t), zс = f3(t), описывающие движение центра С масс твердого тела в пространстве, называют уравнениями поступательного движения твердого тела в пространстве.
Твердое тело рассматривается как неизменяемая механическая система, в которой геометрическая сумма внутренних сил Σ (главный вектор RJ внутренних сил) всегда равна нулю (Σ = RJ = 0).
Таким образом, центр С масс твердого тела при его поступательном движении движется под действием активных сил и реакций внешних связей.
Основное уравнение динамики движения центра масс имеет вид
mac = Σ + Σ .
Спроецируем это векторное равенство на координатные оси неподвижной (инерциальной системы отсчета) OXYZ:
m = Σ + Σ ;
m = Σ + Σ ;
m = Σ + Σ ,
где m – масса тела; , , – проекции ускорения центра масс тела на координатные оси; Σ , Σ , Σ , Σ , Σ , Σ – суммы проекций соответственно активных сил и реакций внешних связей на координатные оси инерциальной системы отсчета.
Последние выражения называют дифференциальными уравнениями поступательного движения твердого тела в пространстве.
По дифференциальным уравнениям поступательного движения твердого тела решают прямые и обратные задачи динамики. Алгоритмы решения таких задач не отличаются от алгоритмов решения задач динамики точки, приведенных в подразделах данного учебно-методического пособия, поэтому здесь они подробно не приводятся.
Так как курсовых заданий на решение дифференциальных уравнений поступательного движения твердого тела по учебной программе не предусмотрено, то и примеры решения таких задач здесь не приведены.