- •Теоретическая механика
- •653500 «Строительство»
- •Введение
- •Программа дисциплины «теоретическая механика»
- •Требования
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •Общие положения
- •Рекомендуется следующий порядок решения контрольных работ
- •Программа раздела «динамика»
- •1. Динамика точки
- •1.1. Введение в динамику точки
- •1.2. Основные понятия и определения
- •1.3. Основные законы механики
- •1.4. Дифференциальные уравнения движения несвободной материальной точки в декартовой системе отсчета
- •1.5. Дифференциальные уравнения движения несвободной материальной точки в естественных координатных осях
- •1.6. Задачи динамики точки
- •1.7. Алгоритм решения первых задач динамики точки в декартовой системе отсчета
- •1.8. Пример решения первой задачи динамики точки в декартовой системе отсчета
- •1.9. Алгоритм решения первых задач динамики точки в естественных координатных осях
- •1.10. Пример решения первой задачи динамики точки в естественных координатных осях
- •1.11. Алгоритм решения вторых задач динамики точки в декартовой системе отсчета
- •Варианты 6 – 10 (рис. 1.10)
- •Варианты 11 – 15 (рис. 1.11)
- •В Рис. 1.12 арианты 16 – 20 (рис. 1.12)
- •Варианты 21 – 25 (рис. 1.13)
- •Варианты 26 – 30 (рис. 1.14)
- •1.13. Пример выполнения курсового задания д 1
- •Вопросы и задания для самоконтроля
- •2. Колебательное движение точки и тела
- •2.1. Виды колебательных движений материальной точки
- •2.2. Свободные колебания материальной точки
- •2.3. Дифференциальное уравнение движения точки под действием постоянной системы сил, восстанавливающей силы и силы сопротивления движению
- •2.4. Затухающие колебания материальной точки
- •2.5. Апериодическое движение точки
- •2.6. Вынужденные колебания материальной точки под действием постоянной системы сил, восстанавливающей силы и возмущающей силы
- •2.7. Влияние сопротивлений движению на вынужденные колебания материальной точки
- •2.8. Алгоритм решения задач на колебания материальной точки
- •2.9. Пример решения задачи на свободные колебания груза по гладкой наклонной поверхности
- •Вопросы и задания для самоконтроля
- •3.2. Частные случаи относительного движения материальной точки
- •3.3. Принцип относительности классической механики. Инерциальные системы отсчета
- •3.4. Алгоритм решения задач на динамику относительного движения материальной точки
- •3.5. Варианты курсового задания д 2 «Исследование относительного движения материальной точки»
- •3.6. Пример выполнения курсового задания д 2
- •Вопросы и задания для самоконтроля
- •4. Геометрия масс механической системы
- •4.1. Центр масс механической системы
- •4.2. Алгоритм определения кинематических характеристик центра масс механической системы
- •4.3. Моменты инерции твердого тела. Радиус инерции
- •Вопросы и задания для самоконтроля
- •5. Общие теоремы динамики
- •5.1. Теорема о движении центра масс механической системы
- •Следствия из теоремы о движении центра масс
- •Вопросы и задания для самоконтроля
- •5.2. Теоремы об изменении количества движения материальной точки и количества движения механической системы
- •5.2.1. Теорема об изменении количества движения
- •5.2.2. Теорема об изменении количества движения
- •Следствия из теоремы
- •Вопросы и задания для самоконтроля
- •5.3. Теоремы об изменении момента количества
- •5.3.1. Моменты количества движения
- •5.3.2. Теорема об изменении момента количества
- •Следствия из теоремы
- •5.3.3. Кинетический момент механической
- •5.3.4. Теорема об изменении кинетического
- •Следствия из теоремы
- •5.3.5. Варианты курсового задания д 3
- •5.3.6. Пример выполнения курсового задания д 3
- •Вопросы и задания для самоконтроля
- •5.4. Динамика движений твердого тела
- •5.4.1. Динамика поступательного движения твердого тела
- •5.4.2. Динамика вращательного движения твердого тела
- •5.4.3. Динамика плоскопараллельного движения
- •Вопросы и задания для самоконтроля
- •5.5. Теорема об изменении кинетической энергии
- •5.5.1. Работа силы на перемещении точки ее приложения
- •5.5.2. Кинетическая энергия механической системы
- •5.5.3. Варианты курсового задания д 4
- •5.5.4. Пример выполнения курсового задания д 4
- •Вопросы и задания для самоконтроля
- •5.6. Принцип Даламбера для материальной точки и механической системы
- •5.6.1. Принцип Даламбера для несвободной
- •5.6.2. Принцип Даламбера для несвободной
- •5.6.3. Приведение сил инерции точек твердого
- •5.6.4. Варианты курсового задания д 5
- •5.6.5. Пример выполнения курсового задания д 5
- •Вопросы и задания для самоконтроля
- •6. Основные начала аналитической механики
- •6.1. Обобщенные координаты и возможные перемещения тел и точек механической системы
- •6.2. Связи и их классификация. Идеальные связи
- •6.3. Принцип возможных перемещений
- •6.3.1. Варианты курсового задания д 6
- •6.3.2. Пример выполнения курсового задания д 6
- •6.3.4. Пример выполнения курсового задания д 7
- •Вопросы и задания для самоконтроля
- •6.4. Общее уравнение динамики
- •6.4.1. Общее уравнение динамики механической системы
- •6.4.2. Варианты курсового задания д 8
- •6.4.3. Пример выполнения курсового задания д 8
- •Вопросы и задания для самоконтроля
- •6.5. Уравнения Лагранжа второго рода
- •Вопросы и задания экзаменационных билетов
- •Пример ответа на экзаменационный билет
- •Решение
- •Решение
- •Уравнения динамического равновесия:
- •Билет № 2
- •Билет № 3
- •Билет № 4
- •Билет № 5
- •Билет № 6
- •Билет № 7
- •Билет № 8
- •Билет № 9
- •Билет № 10
- •Билет № 11
- •Билет № 12
- •Билет № 13
- •Билет № 14
- •Билет № 15
- •Билет № 16
- •Билет № 17
- •Билет № 18
- •Билет № 19
- •Билет № 20
- •Оглавление
- •Для заметок Для заметок Для заметок
- •644099, Омск, ул. П. Некрасова, 10
- •644080, Омск, пр. Мира, 5
Вопросы и задания для самоконтроля
Сформулировать определение понятия «механическая система».
Сформулировать определение понятия «свободная механическая система».
Сформулировать определение понятия «несвободная механическая система».
Сформулировать определение понятия «внешние силы».
Сформулировать определение понятия «внутренние силы».
Сформулировать определение понятия «неизменяемая механическая система».
Сформулировать определение понятия «центр масс механической системы».
Записать формулу для определения радиус-вектора центра масс механической системы.
Записать формулу для определения главного вектора активных сил.
Записать формулу для определения главного вектора реакций внешних связей.
Записать формулу для определения главного вектора реакций внутренних связей.
Записать формулу для определения вектора скорости центра масс механической системы.
Записать формулу для определения вектора ускорения центра масс механической системы.
Записать формулы для определения проекций вектора скорости центра масс механической системы на координатные оси.
Записать формулы для определения проекций вектора ускорения центра масс механической системы на координатные оси.
Записать формулу для определения модуля скорости центра масс механической системы.
Записать формулу для определения модуля ускорения центра масс механической системы.
Что является мерой инертности при поступательном движении твердого тела?
Что является мерой инертности при вращательном движении твердого тела?
Сформулировать определение понятия «момент инерции тела относительно оси вращения».
Что характеризует момент инерции тела относительно оси вращения?
Сформулировать теорему Штейнера.
Записать формулу для определения момента инерции тела относительно вертикальной оси вращения.
Сформулировать определение «радиус инерции твердого тела относительно оси вращения».
Записать формулу для определения момента инерции механической системы.
5. Общие теоремы динамики
5.1. Теорема о движении центра масс механической системы
Р
Рис. 5.1
Поскольку главный вектор внутренних сил = Σ = 0, то теорема о движении центра масс неизменяемой механической системы выражается векторным равенством:
mac = Σ + Σ = FE + RE,
где FE = Σ – главный вектор активных сил; RE = Σ – главный вектор реакций внешних связей.
Произведение массы механической системы на ускорение ее центра масс равно геометрической сумме приложенных к ней активных сил и реакций внешних связей.
Таким образом, центр масс механической системы движется как материальная точка массой, равной массе всей системы, к которой приложены внешние силы (активные силы и реакции внешних связей).
Проецированием последнего векторного равенства на координатные оси системы отсчета OXYZ получим дифференциальные уравнения движения центра масс механической системы:
m
= Σ
+
Σ
;
m
= Σ
+
Σ
;
m
= Σ
+
Σ
,
где Σ , Σ , Σ , Σ , Σ , Σ – суммы проекций соответственно активных сил и реакций внешних связей на координатные оси инерциальной системы отсчета.
Из последних уравнений следует, что внутренние силы не влияют на движение центра масс неизменяемой механической системы.
