- •Теоретическая механика
- •653500 «Строительство»
- •Введение
- •Программа дисциплины «теоретическая механика»
- •Требования
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •Общие положения
- •Рекомендуется следующий порядок решения контрольных работ
- •Программа раздела «динамика»
- •1. Динамика точки
- •1.1. Введение в динамику точки
- •1.2. Основные понятия и определения
- •1.3. Основные законы механики
- •1.4. Дифференциальные уравнения движения несвободной материальной точки в декартовой системе отсчета
- •1.5. Дифференциальные уравнения движения несвободной материальной точки в естественных координатных осях
- •1.6. Задачи динамики точки
- •1.7. Алгоритм решения первых задач динамики точки в декартовой системе отсчета
- •1.8. Пример решения первой задачи динамики точки в декартовой системе отсчета
- •1.9. Алгоритм решения первых задач динамики точки в естественных координатных осях
- •1.10. Пример решения первой задачи динамики точки в естественных координатных осях
- •1.11. Алгоритм решения вторых задач динамики точки в декартовой системе отсчета
- •Варианты 6 – 10 (рис. 1.10)
- •Варианты 11 – 15 (рис. 1.11)
- •В Рис. 1.12 арианты 16 – 20 (рис. 1.12)
- •Варианты 21 – 25 (рис. 1.13)
- •Варианты 26 – 30 (рис. 1.14)
- •1.13. Пример выполнения курсового задания д 1
- •Вопросы и задания для самоконтроля
- •2. Колебательное движение точки и тела
- •2.1. Виды колебательных движений материальной точки
- •2.2. Свободные колебания материальной точки
- •2.3. Дифференциальное уравнение движения точки под действием постоянной системы сил, восстанавливающей силы и силы сопротивления движению
- •2.4. Затухающие колебания материальной точки
- •2.5. Апериодическое движение точки
- •2.6. Вынужденные колебания материальной точки под действием постоянной системы сил, восстанавливающей силы и возмущающей силы
- •2.7. Влияние сопротивлений движению на вынужденные колебания материальной точки
- •2.8. Алгоритм решения задач на колебания материальной точки
- •2.9. Пример решения задачи на свободные колебания груза по гладкой наклонной поверхности
- •Вопросы и задания для самоконтроля
- •3.2. Частные случаи относительного движения материальной точки
- •3.3. Принцип относительности классической механики. Инерциальные системы отсчета
- •3.4. Алгоритм решения задач на динамику относительного движения материальной точки
- •3.5. Варианты курсового задания д 2 «Исследование относительного движения материальной точки»
- •3.6. Пример выполнения курсового задания д 2
- •Вопросы и задания для самоконтроля
- •4. Геометрия масс механической системы
- •4.1. Центр масс механической системы
- •4.2. Алгоритм определения кинематических характеристик центра масс механической системы
- •4.3. Моменты инерции твердого тела. Радиус инерции
- •Вопросы и задания для самоконтроля
- •5. Общие теоремы динамики
- •5.1. Теорема о движении центра масс механической системы
- •Следствия из теоремы о движении центра масс
- •Вопросы и задания для самоконтроля
- •5.2. Теоремы об изменении количества движения материальной точки и количества движения механической системы
- •5.2.1. Теорема об изменении количества движения
- •5.2.2. Теорема об изменении количества движения
- •Следствия из теоремы
- •Вопросы и задания для самоконтроля
- •5.3. Теоремы об изменении момента количества
- •5.3.1. Моменты количества движения
- •5.3.2. Теорема об изменении момента количества
- •Следствия из теоремы
- •5.3.3. Кинетический момент механической
- •5.3.4. Теорема об изменении кинетического
- •Следствия из теоремы
- •5.3.5. Варианты курсового задания д 3
- •5.3.6. Пример выполнения курсового задания д 3
- •Вопросы и задания для самоконтроля
- •5.4. Динамика движений твердого тела
- •5.4.1. Динамика поступательного движения твердого тела
- •5.4.2. Динамика вращательного движения твердого тела
- •5.4.3. Динамика плоскопараллельного движения
- •Вопросы и задания для самоконтроля
- •5.5. Теорема об изменении кинетической энергии
- •5.5.1. Работа силы на перемещении точки ее приложения
- •5.5.2. Кинетическая энергия механической системы
- •5.5.3. Варианты курсового задания д 4
- •5.5.4. Пример выполнения курсового задания д 4
- •Вопросы и задания для самоконтроля
- •5.6. Принцип Даламбера для материальной точки и механической системы
- •5.6.1. Принцип Даламбера для несвободной
- •5.6.2. Принцип Даламбера для несвободной
- •5.6.3. Приведение сил инерции точек твердого
- •5.6.4. Варианты курсового задания д 5
- •5.6.5. Пример выполнения курсового задания д 5
- •Вопросы и задания для самоконтроля
- •6. Основные начала аналитической механики
- •6.1. Обобщенные координаты и возможные перемещения тел и точек механической системы
- •6.2. Связи и их классификация. Идеальные связи
- •6.3. Принцип возможных перемещений
- •6.3.1. Варианты курсового задания д 6
- •6.3.2. Пример выполнения курсового задания д 6
- •6.3.4. Пример выполнения курсового задания д 7
- •Вопросы и задания для самоконтроля
- •6.4. Общее уравнение динамики
- •6.4.1. Общее уравнение динамики механической системы
- •6.4.2. Варианты курсового задания д 8
- •6.4.3. Пример выполнения курсового задания д 8
- •Вопросы и задания для самоконтроля
- •6.5. Уравнения Лагранжа второго рода
- •Вопросы и задания экзаменационных билетов
- •Пример ответа на экзаменационный билет
- •Решение
- •Решение
- •Уравнения динамического равновесия:
- •Билет № 2
- •Билет № 3
- •Билет № 4
- •Билет № 5
- •Билет № 6
- •Билет № 7
- •Билет № 8
- •Билет № 9
- •Билет № 10
- •Билет № 11
- •Билет № 12
- •Билет № 13
- •Билет № 14
- •Билет № 15
- •Билет № 16
- •Билет № 17
- •Билет № 18
- •Билет № 19
- •Билет № 20
- •Оглавление
- •Для заметок Для заметок Для заметок
- •644099, Омск, ул. П. Некрасова, 10
- •644080, Омск, пр. Мира, 5
3.2. Частные случаи относительного движения материальной точки
Случай 1.
П
Рис. 3.4
В этом случае переносное ускорение ae равно геометрической сумме центростремительного и вращательного ускорений:
ae
=
,
где
,
– соответственно центростремительное
и вращательное
переносные ускорения.
В соответствии с этим имеем
Фе
= – mae
=
– m(
)
= – m
– m
=
+
,
где = – m – центробежная переносная сила инерции; = – m – вращательная переносная сила инерции.
Для рассматриваемого случая модули переносных центробежной и вращательной сил инерции находят по формулам:
=
m(ωe)2x;
= mεx.
Основное уравнение динамики и дифференциальные уравнения относительного движения точки в этом случае описываются следующими выражениями:
mar = ΣFi + ΣRi + + + Фс;
m
=
ΣFiоx
+ ΣRiоx
+
+
+
Фсоx;
m
=
ΣFiоy
+ ΣRiоy
+
+
+ Фсоy;
m
=
ΣFiоz
+ ΣRiоz
+
+
+ Фсоz.
Случай 2.
П
Рис. 3.5
В
этом случае угловое ускорение переносного
вращения εе
= 0 и, следовательно, переносная вращательная
сила инерции
= 0. Тогда основное уравнение динамики
и дифференциальные уравнения относительного
движения точки описываются выражениями:
mar
=
ΣFi
+ ΣRi
+
+ Фс;
m
=
ΣFiоx
+ ΣRiоx
+
+ Фсоx;
m = ΣFiоy + ΣRiоy + + Фсоy;
m = ΣFiоz + ΣRiоz + + Фсоz.
Случай 3.
П
Рис. 3.6
Согласно рис. 3.6 механизм содержит кривошипы 1, 2 и прямоугольную пластину 3, по которой перемещается материальная точка по закону x = f(t). Кривошипы 1, 2 совершают вращательные движения, а пластина 3 – поступательное движение.
В рассматриваемом случае имеем ωе = 0 и Фс = 0, поэтому основное уравнение динамики относительного движения принимает вид
mar = ΣFi + ΣRi + Фе,
где Фе = – mae – переносная сила инерции.
Так как переносное движение является поступательным, то его ускорение ae равно ускорению точки А тела D. С другой стороны, точка А принадлежит кривошипу О1А, совершающему вращательное неравномерное движение (ωе ≠ 0; εе ≠ 0). Тогда
ae
= aА
=
=
,
где
,
– соответственно центростремительное
и вращательное ускорения точки А
кривошипа О1А;
,
– соответственно нормальное и касательное
переносные ускорения.
Отсюда вытекает очевидные равенства:
=
= ω2·r;
=
= ε·r;
=
– m
;
= – m
,
где , – переносные нормальная и касательная силы инерции.
С учетом того, что Фе = + , имеем:
mar
=
ΣFi
+ ΣRi
+
+
;
m
=
ΣFiоx
+ ΣRiоx
+
+
;
m
=
ΣFiоy
+ ΣRiоy
+
+
;
m
=
ΣFiоz
+ ΣRiоz
+
+
.
Случай 4.
Переносное движение – поступательное прямолинейное и равномерное. В этом случае имеем: ωе = 0; ae = 0 и, следовательно, Фс = 0, Фе = 0. Тогда основное уравнение динамики относительного движения принимает вид
mar = ΣFi + ΣRi.
Это уравнение не отличается от основного уравнения динамики материальной точки в инерциальной системе отсчета, которое имеет вид
ma = ΣFi + ΣRi.
