- •Теоретическая механика
- •653500 «Строительство»
- •Введение
- •Программа дисциплины «теоретическая механика»
- •Требования
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •Общие положения
- •Рекомендуется следующий порядок решения контрольных работ
- •Программа раздела «динамика»
- •1. Динамика точки
- •1.1. Введение в динамику точки
- •1.2. Основные понятия и определения
- •1.3. Основные законы механики
- •1.4. Дифференциальные уравнения движения несвободной материальной точки в декартовой системе отсчета
- •1.5. Дифференциальные уравнения движения несвободной материальной точки в естественных координатных осях
- •1.6. Задачи динамики точки
- •1.7. Алгоритм решения первых задач динамики точки в декартовой системе отсчета
- •1.8. Пример решения первой задачи динамики точки в декартовой системе отсчета
- •1.9. Алгоритм решения первых задач динамики точки в естественных координатных осях
- •1.10. Пример решения первой задачи динамики точки в естественных координатных осях
- •1.11. Алгоритм решения вторых задач динамики точки в декартовой системе отсчета
- •Варианты 6 – 10 (рис. 1.10)
- •Варианты 11 – 15 (рис. 1.11)
- •В Рис. 1.12 арианты 16 – 20 (рис. 1.12)
- •Варианты 21 – 25 (рис. 1.13)
- •Варианты 26 – 30 (рис. 1.14)
- •1.13. Пример выполнения курсового задания д 1
- •Вопросы и задания для самоконтроля
- •2. Колебательное движение точки и тела
- •2.1. Виды колебательных движений материальной точки
- •2.2. Свободные колебания материальной точки
- •2.3. Дифференциальное уравнение движения точки под действием постоянной системы сил, восстанавливающей силы и силы сопротивления движению
- •2.4. Затухающие колебания материальной точки
- •2.5. Апериодическое движение точки
- •2.6. Вынужденные колебания материальной точки под действием постоянной системы сил, восстанавливающей силы и возмущающей силы
- •2.7. Влияние сопротивлений движению на вынужденные колебания материальной точки
- •2.8. Алгоритм решения задач на колебания материальной точки
- •2.9. Пример решения задачи на свободные колебания груза по гладкой наклонной поверхности
- •Вопросы и задания для самоконтроля
- •3.2. Частные случаи относительного движения материальной точки
- •3.3. Принцип относительности классической механики. Инерциальные системы отсчета
- •3.4. Алгоритм решения задач на динамику относительного движения материальной точки
- •3.5. Варианты курсового задания д 2 «Исследование относительного движения материальной точки»
- •3.6. Пример выполнения курсового задания д 2
- •Вопросы и задания для самоконтроля
- •4. Геометрия масс механической системы
- •4.1. Центр масс механической системы
- •4.2. Алгоритм определения кинематических характеристик центра масс механической системы
- •4.3. Моменты инерции твердого тела. Радиус инерции
- •Вопросы и задания для самоконтроля
- •5. Общие теоремы динамики
- •5.1. Теорема о движении центра масс механической системы
- •Следствия из теоремы о движении центра масс
- •Вопросы и задания для самоконтроля
- •5.2. Теоремы об изменении количества движения материальной точки и количества движения механической системы
- •5.2.1. Теорема об изменении количества движения
- •5.2.2. Теорема об изменении количества движения
- •Следствия из теоремы
- •Вопросы и задания для самоконтроля
- •5.3. Теоремы об изменении момента количества
- •5.3.1. Моменты количества движения
- •5.3.2. Теорема об изменении момента количества
- •Следствия из теоремы
- •5.3.3. Кинетический момент механической
- •5.3.4. Теорема об изменении кинетического
- •Следствия из теоремы
- •5.3.5. Варианты курсового задания д 3
- •5.3.6. Пример выполнения курсового задания д 3
- •Вопросы и задания для самоконтроля
- •5.4. Динамика движений твердого тела
- •5.4.1. Динамика поступательного движения твердого тела
- •5.4.2. Динамика вращательного движения твердого тела
- •5.4.3. Динамика плоскопараллельного движения
- •Вопросы и задания для самоконтроля
- •5.5. Теорема об изменении кинетической энергии
- •5.5.1. Работа силы на перемещении точки ее приложения
- •5.5.2. Кинетическая энергия механической системы
- •5.5.3. Варианты курсового задания д 4
- •5.5.4. Пример выполнения курсового задания д 4
- •Вопросы и задания для самоконтроля
- •5.6. Принцип Даламбера для материальной точки и механической системы
- •5.6.1. Принцип Даламбера для несвободной
- •5.6.2. Принцип Даламбера для несвободной
- •5.6.3. Приведение сил инерции точек твердого
- •5.6.4. Варианты курсового задания д 5
- •5.6.5. Пример выполнения курсового задания д 5
- •Вопросы и задания для самоконтроля
- •6. Основные начала аналитической механики
- •6.1. Обобщенные координаты и возможные перемещения тел и точек механической системы
- •6.2. Связи и их классификация. Идеальные связи
- •6.3. Принцип возможных перемещений
- •6.3.1. Варианты курсового задания д 6
- •6.3.2. Пример выполнения курсового задания д 6
- •6.3.4. Пример выполнения курсового задания д 7
- •Вопросы и задания для самоконтроля
- •6.4. Общее уравнение динамики
- •6.4.1. Общее уравнение динамики механической системы
- •6.4.2. Варианты курсового задания д 8
- •6.4.3. Пример выполнения курсового задания д 8
- •Вопросы и задания для самоконтроля
- •6.5. Уравнения Лагранжа второго рода
- •Вопросы и задания экзаменационных билетов
- •Пример ответа на экзаменационный билет
- •Решение
- •Решение
- •Уравнения динамического равновесия:
- •Билет № 2
- •Билет № 3
- •Билет № 4
- •Билет № 5
- •Билет № 6
- •Билет № 7
- •Билет № 8
- •Билет № 9
- •Билет № 10
- •Билет № 11
- •Билет № 12
- •Билет № 13
- •Билет № 14
- •Билет № 15
- •Билет № 16
- •Билет № 17
- •Билет № 18
- •Билет № 19
- •Билет № 20
- •Оглавление
- •Для заметок Для заметок Для заметок
- •644099, Омск, ул. П. Некрасова, 10
- •644080, Омск, пр. Мира, 5
2.7. Влияние сопротивлений движению на вынужденные колебания материальной точки
Р
Рис. 2.15
Начало системы отсчета ОY поместим в положение статического равновесия материальной точки, при котором пружина не деформирована.
Основное уравнение динамики точки для рассматриваемого случая имеет вид
ma = ΣFi + ΣRi = G + Q + Rc + N + Fyn.
Необходимо отметить, что силы G, Q являются активными силами, а силы Rc, N, Fyn отнесены к разряду реакций связей. Так как силы G и N не влияют на горизонтальное движение точки, то они на рис. 2.15 не показаны.
Из предыдущего материала, изложенного в данном разделе учебно-методического пособия, известно:
Rc = – αV; Fyn = c·Δ; Q = Hsin(pt + δ).
С учетом этого дифференциальное уравнение горизонтального движения точки описывается равенством
m = ΣFioy + ΣRioy = Hsin(pt + δ) – α – cy.
Перенеся члены α , cy в левую часть равенства и разделив обе его части на массу m, получим
+ (α/m) + (c/m)y = (H/m)sin(pt + δ),
где c/m = k2 – квадрат циклической частоты свободных колебаний; α/2m = n – коэффициент затухания; H/m = h – отношение амплитуды возмущающей силы к массе точки.
При этих обозначениях дифференциальное уравнение движения точки имеет вид
=
hsin(pt
+ δ).
Последнее уравнение представляет собой дифференциальное уравнение вынужденных колебаний точки при наличии сопротивления движению, пропорционального скорости.
Общее решение этого уравнения состоит из общего решения y* дифференциального уравнения и частного решения y**.
Таким образом, общее решение дифференциального уравнения = hsin(pt + δ) имеет вид y = y*+ y**.
Частное решение y** выражается формулой
y** = Acsin(pt + δ – ε),
где Ас, ε – постоянные величины, не зависящие от начальных условий движения точки.
Эти постоянные называют: Ас – амплитуда вынужденных колебаний при наличии сопротивления движению; ε – сдвиг фазы.
Значения Ас и ε определяют по следующей совокупности формул:
Ac
= h/(
);
tgε = 2np/(k2
– p2);
sinε = 2npAc/h; cosε = Ac(k2 – p2)/h.
Общее решение дифференциального уравнения = hsin(pt + δ) в зависимости от соотношения величин k и n имеет вид:
при n < k y = ae-ntsin(k*t + β) + Acsin(pt + δ – ε);
при n = k y = e-nt(C1t + C2) + Acsin(pt + δ – ε);
при
n
> k
y
= e-nt(C1
)t
+ C2
)t)
+ Acsin(pt
+ δ
– ε),
где α, β, С1, С2 – постоянные интегрирования, определяемые по начальным условиям движения точки.
Н
Рис. 2.16
На рис. 2.17 приведены графики зависимостей y* = f1(t), y** = f2(t), y = f3(t) для случая, когда n = k; p > k, и начальных условий y0 > 0; >0.
Рис. 2.17
Таким образом, графики зависимостей y = f3(t) на рис. 2.16, 2.17 при p > k представляют собой наложение высокочастотных вынужденных колебаний y** = f2(t) соответственно на затухающие колебания (см. рис. 2.16) или апериодическое движение (см. рис. 2.17).
