- •Теоретическая механика
- •653500 «Строительство»
- •Введение
- •Программа дисциплины «теоретическая механика»
- •Требования
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •Общие положения
- •Рекомендуется следующий порядок решения контрольных работ
- •Программа раздела «динамика»
- •1. Динамика точки
- •1.1. Введение в динамику точки
- •1.2. Основные понятия и определения
- •1.3. Основные законы механики
- •1.4. Дифференциальные уравнения движения несвободной материальной точки в декартовой системе отсчета
- •1.5. Дифференциальные уравнения движения несвободной материальной точки в естественных координатных осях
- •1.6. Задачи динамики точки
- •1.7. Алгоритм решения первых задач динамики точки в декартовой системе отсчета
- •1.8. Пример решения первой задачи динамики точки в декартовой системе отсчета
- •1.9. Алгоритм решения первых задач динамики точки в естественных координатных осях
- •1.10. Пример решения первой задачи динамики точки в естественных координатных осях
- •1.11. Алгоритм решения вторых задач динамики точки в декартовой системе отсчета
- •Варианты 6 – 10 (рис. 1.10)
- •Варианты 11 – 15 (рис. 1.11)
- •В Рис. 1.12 арианты 16 – 20 (рис. 1.12)
- •Варианты 21 – 25 (рис. 1.13)
- •Варианты 26 – 30 (рис. 1.14)
- •1.13. Пример выполнения курсового задания д 1
- •Вопросы и задания для самоконтроля
- •2. Колебательное движение точки и тела
- •2.1. Виды колебательных движений материальной точки
- •2.2. Свободные колебания материальной точки
- •2.3. Дифференциальное уравнение движения точки под действием постоянной системы сил, восстанавливающей силы и силы сопротивления движению
- •2.4. Затухающие колебания материальной точки
- •2.5. Апериодическое движение точки
- •2.6. Вынужденные колебания материальной точки под действием постоянной системы сил, восстанавливающей силы и возмущающей силы
- •2.7. Влияние сопротивлений движению на вынужденные колебания материальной точки
- •2.8. Алгоритм решения задач на колебания материальной точки
- •2.9. Пример решения задачи на свободные колебания груза по гладкой наклонной поверхности
- •Вопросы и задания для самоконтроля
- •3.2. Частные случаи относительного движения материальной точки
- •3.3. Принцип относительности классической механики. Инерциальные системы отсчета
- •3.4. Алгоритм решения задач на динамику относительного движения материальной точки
- •3.5. Варианты курсового задания д 2 «Исследование относительного движения материальной точки»
- •3.6. Пример выполнения курсового задания д 2
- •Вопросы и задания для самоконтроля
- •4. Геометрия масс механической системы
- •4.1. Центр масс механической системы
- •4.2. Алгоритм определения кинематических характеристик центра масс механической системы
- •4.3. Моменты инерции твердого тела. Радиус инерции
- •Вопросы и задания для самоконтроля
- •5. Общие теоремы динамики
- •5.1. Теорема о движении центра масс механической системы
- •Следствия из теоремы о движении центра масс
- •Вопросы и задания для самоконтроля
- •5.2. Теоремы об изменении количества движения материальной точки и количества движения механической системы
- •5.2.1. Теорема об изменении количества движения
- •5.2.2. Теорема об изменении количества движения
- •Следствия из теоремы
- •Вопросы и задания для самоконтроля
- •5.3. Теоремы об изменении момента количества
- •5.3.1. Моменты количества движения
- •5.3.2. Теорема об изменении момента количества
- •Следствия из теоремы
- •5.3.3. Кинетический момент механической
- •5.3.4. Теорема об изменении кинетического
- •Следствия из теоремы
- •5.3.5. Варианты курсового задания д 3
- •5.3.6. Пример выполнения курсового задания д 3
- •Вопросы и задания для самоконтроля
- •5.4. Динамика движений твердого тела
- •5.4.1. Динамика поступательного движения твердого тела
- •5.4.2. Динамика вращательного движения твердого тела
- •5.4.3. Динамика плоскопараллельного движения
- •Вопросы и задания для самоконтроля
- •5.5. Теорема об изменении кинетической энергии
- •5.5.1. Работа силы на перемещении точки ее приложения
- •5.5.2. Кинетическая энергия механической системы
- •5.5.3. Варианты курсового задания д 4
- •5.5.4. Пример выполнения курсового задания д 4
- •Вопросы и задания для самоконтроля
- •5.6. Принцип Даламбера для материальной точки и механической системы
- •5.6.1. Принцип Даламбера для несвободной
- •5.6.2. Принцип Даламбера для несвободной
- •5.6.3. Приведение сил инерции точек твердого
- •5.6.4. Варианты курсового задания д 5
- •5.6.5. Пример выполнения курсового задания д 5
- •Вопросы и задания для самоконтроля
- •6. Основные начала аналитической механики
- •6.1. Обобщенные координаты и возможные перемещения тел и точек механической системы
- •6.2. Связи и их классификация. Идеальные связи
- •6.3. Принцип возможных перемещений
- •6.3.1. Варианты курсового задания д 6
- •6.3.2. Пример выполнения курсового задания д 6
- •6.3.4. Пример выполнения курсового задания д 7
- •Вопросы и задания для самоконтроля
- •6.4. Общее уравнение динамики
- •6.4.1. Общее уравнение динамики механической системы
- •6.4.2. Варианты курсового задания д 8
- •6.4.3. Пример выполнения курсового задания д 8
- •Вопросы и задания для самоконтроля
- •6.5. Уравнения Лагранжа второго рода
- •Вопросы и задания экзаменационных билетов
- •Пример ответа на экзаменационный билет
- •Решение
- •Решение
- •Уравнения динамического равновесия:
- •Билет № 2
- •Билет № 3
- •Билет № 4
- •Билет № 5
- •Билет № 6
- •Билет № 7
- •Билет № 8
- •Билет № 9
- •Билет № 10
- •Билет № 11
- •Билет № 12
- •Билет № 13
- •Билет № 14
- •Билет № 15
- •Билет № 16
- •Билет № 17
- •Билет № 18
- •Билет № 19
- •Билет № 20
- •Оглавление
- •Для заметок Для заметок Для заметок
- •644099, Омск, ул. П. Некрасова, 10
- •644080, Омск, пр. Мира, 5
2.3. Дифференциальное уравнение движения точки под действием постоянной системы сил, восстанавливающей силы и силы сопротивления движению
Рассмотрим движение материальной точки по гладкой горизонтальной поверхности, происходящее под действием постоянной системы сил, восстанавливающей силы и силы сопротивления движению, пропорциональной первой степени скорости (рис. 2.4).
Как и ранее, начало системы отсчета поместим в положение статического равновесия точки. В этом положении пружина не деформирована, т. е. имеет длину l0. При оформлении рис. 2.4 используются рекомендации, приведенные в алгоритме решения вторых задач динамики точки.
Основное уравнение динамики в рассматриваемом случае имеет вид
ma = ΣFi + ΣRi = G + N + Rc + Fyn,
где G – сила тяжести; N – нормальная реакция; Rc – сила сопротивления движению точки; Fyn – сила упругости пружины.
Рис. 2.4
Так как силы G и N на кинематические параметры точки не влияют, то они на рис. 2.4 не показаны.
Сила Rc сопротивления движению точки зависит от внешней среды, в которой эта точка перемещается.
Рассмотрим вариант, при котором сила Rc пропорциональна первой степени скорости V точки. Примером такой силы является сопротивление воздуха при движении тела. В этом случае силу Rc определяют по формуле Rc = – αV, где α – постоянный коэффициент пропорциональности, имеющий размерность [Н/(м/с)]. Коэффициент α численно равен силе сопротивления при скорости движения точки, равной 1 м/с. Сила сопротивления Rc всегда направлена в сторону, противоположную направлению скорости V.
Запишем дифференциальное уравнение горизонтального движения точки:
m = ΣFioy + ΣRioy = – α – cy.
Это уравнение приведем к виду
+ (α/m) + (c/m)y = 0.
Введем условные обозначения: α/m = 2n; c/m = k2. С учетом коэффициентов n, k дифференциальное уравнение движения приводится к стандартному виду:
,
где n – коэффициент, характеризующий сопротивление среды и имеющий размерность [рад/с] или [c-1].
В зависимости от соотношения величин n и k материальная точка может совершать или колебательное, или апериодическое (неколебательное) движение.
2.4. Затухающие колебания материальной точки
Рассмотрим первый вариант движения точки, при котором n < k. В этом варианте общее решение дифференциального уравнения имеет два вида:
y
= e-nt(C1cos((
)t)
+ C2sin((
)t));
y = ae-ntsin(( )t + β),
где С1, С2, a, β – постоянные интегрирования, определяемые по начальным условиям движения.
Эти выражения называют уравнениями затухающих колебаний материальной точки.
Пусть начальными условиями движения являются: t0 = 0; y0; . В этих условиях первый вид решения дифференциального уравнения выражается формулой
y = e-nt(y0cos(( )t) + (( +ny0)/ )sin(( )t)).
Постоянную величину называют циклической частотой затухающих колебаний k*, которую определяют по формуле
k* = .
Величина k* определяет число полных колебаний за промежуток времени, равный 2π = 6,28 с. Тогда имеем
y = e-nt(y0cos(k*t) + (( + ny0)/k*)sin(k*t)).
Как правило, для практических расчетов используют второй вид общего решения дифференциального уравнения движения точки.
y = ae-ntsin(k*t + β),
где (k*t + β) – фаза затухающих колебаний; β – начальная фаза; a – постоянная интегрирования.
Для определения постоянных интегрирования a и β используют следующую совокупность формул:
а
=
;
tgβ
= y0k*/(
);
sinβ = y0/ a;
cosβ = ( )/(аk*).
Для характеристики затухающих колебаний используют понятие «период затухающих колебаний Т*».
Период затухающих колебаний – промежуток времени между двумя последовательными прохождениями точки в одном направлении через положение покоя.
Период
затухающих колебаний (
= 2π/k*)
больше периода свободных колебаний (T
= 2π/k)
точки.
Н
Рис. 2.5
На рис. 2.5 использованы начальные условия движения точки, приведенные на рис. 2.4. График затухающих колебаний располагается в зоне, ограниченной двумя кривыми линиями, описываемыми математическими выражениями: y = аe-nt; y = – аe-nt.
Для характеристики затухающих колебаний используют также понятие «амплитуда аi затухающих колебаний».
Амплитуда затухающих колебаний – величина наибольшего отклонения точки в ту или другую сторону от положения статического равновесия в течение каждого колебания.
Из рис. 2.5 видно, что амплитуда затухающих колебаний переменна. При этом последующая амплитуда аi+1 меньше предыдущей амплитуды аi. Это уменьшение характеризуется отношением
аi+1/ аi = e– nT*/2 = const.
Число e– nT*/2 называют декрементом колебаний; натуральный логарифм, т. е. величину nT*/2, называют логарифмическим декрементом.
Зная предыдущее значение аi амплитуды, последующее значение аi+1 находят по формуле
аi+1 = аi e– nT*/2.
Следует отметить, что в некоторых учебниках коэффициент n сопротивления среды называют коэффициентом затухания.
Практика показывает, что затухание колебаний происходит очень быстро даже при малом сопротивлении. Так, например, при n = 0,05k имеем Т*= 1,00125Т, e–nT* = 0,7301, т. е. период Т* затухающих колебаний отличается от периода Т свободных колебаний лишь на 0,125 %, а амплитуда аi за время одного полного колебания уменьшается на 0,27 своей величины, и после 10 полных колебаний становится равной 0,043 своего первоначального значения.
Таким образом, основное влияние сопротивления на свободные колебания материальной точки выражается в уменьшении амплитуды колебаний с течением времени, т. е. в затухании колебаний.
Затухающие колебания называют также колебаниями с малым сопротивлением внешней среды.
