- •Теоретическая механика
- •653500 «Строительство»
- •Введение
- •Программа дисциплины «теоретическая механика»
- •Требования
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •Общие положения
- •Рекомендуется следующий порядок решения контрольных работ
- •Программа раздела «динамика»
- •1. Динамика точки
- •1.1. Введение в динамику точки
- •1.2. Основные понятия и определения
- •1.3. Основные законы механики
- •1.4. Дифференциальные уравнения движения несвободной материальной точки в декартовой системе отсчета
- •1.5. Дифференциальные уравнения движения несвободной материальной точки в естественных координатных осях
- •1.6. Задачи динамики точки
- •1.7. Алгоритм решения первых задач динамики точки в декартовой системе отсчета
- •1.8. Пример решения первой задачи динамики точки в декартовой системе отсчета
- •1.9. Алгоритм решения первых задач динамики точки в естественных координатных осях
- •1.10. Пример решения первой задачи динамики точки в естественных координатных осях
- •1.11. Алгоритм решения вторых задач динамики точки в декартовой системе отсчета
- •Варианты 6 – 10 (рис. 1.10)
- •Варианты 11 – 15 (рис. 1.11)
- •В Рис. 1.12 арианты 16 – 20 (рис. 1.12)
- •Варианты 21 – 25 (рис. 1.13)
- •Варианты 26 – 30 (рис. 1.14)
- •1.13. Пример выполнения курсового задания д 1
- •Вопросы и задания для самоконтроля
- •2. Колебательное движение точки и тела
- •2.1. Виды колебательных движений материальной точки
- •2.2. Свободные колебания материальной точки
- •2.3. Дифференциальное уравнение движения точки под действием постоянной системы сил, восстанавливающей силы и силы сопротивления движению
- •2.4. Затухающие колебания материальной точки
- •2.5. Апериодическое движение точки
- •2.6. Вынужденные колебания материальной точки под действием постоянной системы сил, восстанавливающей силы и возмущающей силы
- •2.7. Влияние сопротивлений движению на вынужденные колебания материальной точки
- •2.8. Алгоритм решения задач на колебания материальной точки
- •2.9. Пример решения задачи на свободные колебания груза по гладкой наклонной поверхности
- •Вопросы и задания для самоконтроля
- •3.2. Частные случаи относительного движения материальной точки
- •3.3. Принцип относительности классической механики. Инерциальные системы отсчета
- •3.4. Алгоритм решения задач на динамику относительного движения материальной точки
- •3.5. Варианты курсового задания д 2 «Исследование относительного движения материальной точки»
- •3.6. Пример выполнения курсового задания д 2
- •Вопросы и задания для самоконтроля
- •4. Геометрия масс механической системы
- •4.1. Центр масс механической системы
- •4.2. Алгоритм определения кинематических характеристик центра масс механической системы
- •4.3. Моменты инерции твердого тела. Радиус инерции
- •Вопросы и задания для самоконтроля
- •5. Общие теоремы динамики
- •5.1. Теорема о движении центра масс механической системы
- •Следствия из теоремы о движении центра масс
- •Вопросы и задания для самоконтроля
- •5.2. Теоремы об изменении количества движения материальной точки и количества движения механической системы
- •5.2.1. Теорема об изменении количества движения
- •5.2.2. Теорема об изменении количества движения
- •Следствия из теоремы
- •Вопросы и задания для самоконтроля
- •5.3. Теоремы об изменении момента количества
- •5.3.1. Моменты количества движения
- •5.3.2. Теорема об изменении момента количества
- •Следствия из теоремы
- •5.3.3. Кинетический момент механической
- •5.3.4. Теорема об изменении кинетического
- •Следствия из теоремы
- •5.3.5. Варианты курсового задания д 3
- •5.3.6. Пример выполнения курсового задания д 3
- •Вопросы и задания для самоконтроля
- •5.4. Динамика движений твердого тела
- •5.4.1. Динамика поступательного движения твердого тела
- •5.4.2. Динамика вращательного движения твердого тела
- •5.4.3. Динамика плоскопараллельного движения
- •Вопросы и задания для самоконтроля
- •5.5. Теорема об изменении кинетической энергии
- •5.5.1. Работа силы на перемещении точки ее приложения
- •5.5.2. Кинетическая энергия механической системы
- •5.5.3. Варианты курсового задания д 4
- •5.5.4. Пример выполнения курсового задания д 4
- •Вопросы и задания для самоконтроля
- •5.6. Принцип Даламбера для материальной точки и механической системы
- •5.6.1. Принцип Даламбера для несвободной
- •5.6.2. Принцип Даламбера для несвободной
- •5.6.3. Приведение сил инерции точек твердого
- •5.6.4. Варианты курсового задания д 5
- •5.6.5. Пример выполнения курсового задания д 5
- •Вопросы и задания для самоконтроля
- •6. Основные начала аналитической механики
- •6.1. Обобщенные координаты и возможные перемещения тел и точек механической системы
- •6.2. Связи и их классификация. Идеальные связи
- •6.3. Принцип возможных перемещений
- •6.3.1. Варианты курсового задания д 6
- •6.3.2. Пример выполнения курсового задания д 6
- •6.3.4. Пример выполнения курсового задания д 7
- •Вопросы и задания для самоконтроля
- •6.4. Общее уравнение динамики
- •6.4.1. Общее уравнение динамики механической системы
- •6.4.2. Варианты курсового задания д 8
- •6.4.3. Пример выполнения курсового задания д 8
- •Вопросы и задания для самоконтроля
- •6.5. Уравнения Лагранжа второго рода
- •Вопросы и задания экзаменационных билетов
- •Пример ответа на экзаменационный билет
- •Решение
- •Решение
- •Уравнения динамического равновесия:
- •Билет № 2
- •Билет № 3
- •Билет № 4
- •Билет № 5
- •Билет № 6
- •Билет № 7
- •Билет № 8
- •Билет № 9
- •Билет № 10
- •Билет № 11
- •Билет № 12
- •Билет № 13
- •Билет № 14
- •Билет № 15
- •Билет № 16
- •Билет № 17
- •Билет № 18
- •Билет № 19
- •Билет № 20
- •Оглавление
- •Для заметок Для заметок Для заметок
- •644099, Омск, ул. П. Некрасова, 10
- •644080, Омск, пр. Мира, 5
1.10. Пример решения первой задачи динамики точки в естественных координатных осях
Условие задачи.
Материальная точка массой m = 1,2 кг движется по окружности радиуса r = 1 м на гладкой горизонтальной поверхности согласно уравнению s = 2,4t2 (рис. 1.7). Заданы начальные условия движения: s0 = 0; V0 = 0. Определить модуль равнодействующей сил, приложенных к материальной точке в момент времени t1 = 1 c.
Решение.
Н
Рис. 1.7
а рис. 1.7 изобразим материальную точку в произвольный момент времени.В эту точку поместим начало координат ПСО.
Орт τ направлен в сторону возрастания дуговой координаты s, а орт n направлен к центру кривизны траектории движения. Этим центром является центр окружности. Радиус ρ кривизны траектории движения точки равен радиусу окружности ρ = r.
Покажем на рис. 1.7 начальные условия движения. По условиям задачи s0 = 0; V0=0.
Согласно условию задачи к точке приложены активные силы G и F1 и реакция N гладкой поверхности. Поскольку рис. 1.7 изображен в ортогональных проекциях, то силы G и N перпендикулярны опорной поверхности точки и, следовательно, на рисунке не видны. Основное уравнение динамики для решаемой задачи имеет вид
ma = ΣFi + ΣRi = G + F1+ N.
6. Запишем дифференциальные уравнения движения точки в естественных координатных осях.
m = ΣFiτ + ΣRiτ = F1sinα; (1)
m
/ρ
= ΣFin
+ ΣRin
= F1cosα;
(2)
ΣFib + ΣRib = 0 = – G + N. (3)
Из уравнения (3) имеем N = G = mg = 1,2·9,81 = 11,772 H.
7. По заданному уравнению s = 2,4t2 определим проекцию скорости V и проекцию ускорения точки на касательную.
= 4,8t; =4,8 м/с2.
8. Найденные проекции , подставим в уравнения (1), (2). Получим:
m(4,8) = F1sinα; (11)
m(4,8t)2/r = F1cosα. (21)
9. Согласно уравнениям (11), (21) имеем:
Pτ = F1sinα; Pn = F1cosα,
где Pτ, Pn – проекции равнодействующей Р = G + F1 + N активных сил и реакций внешних связей, приложенных к точке, на координатные оси ПСО. Тогда:
Pτ = m(4,8); (111)
Pn = m(4,8t)/r. (211)
Определим значения Pτ и Pn в момент времени t1.
Pτ(t1) = 1,2·4,8 = 5,76 H;
Pn(t1) = m(4,8t1) = 1,2·4,8·1 = 5,76 H.
10. Определим модуль Р равнодействующей в момент времени t1.
=
=
8,145 Н.
11. Для ориентации вектора Р в пространстве определим направляющие косинусы и величину угла α, составленного направлением равнодействующей силы Р и ортом τ.
cos(P, τ) = Pτ/P = 5,76/8,145 = 0,707.
α = arcos(0,707) = 45о.
12. Определим положение точки на траектории ее движения в момент времени t1 и зафиксируем это положение центральным углом β.
s(t1) = 2,4(t1)2 = 2,4·12 = 2,4 м;
β = s(t1)/r = 2,4/1 = 2,4 рад.
В градусной мере β = (2,4/3,14)180о = 137,579о.
Полученные результаты расчетов проиллюстрируем рис. 1.8.
Рис. 1.8
Таким образом, задача решена. Ответы на вопросы получены.
