- •Принцип дії квантового підсилювача, замалювати схему.
- •Методи накачки. Хімічне та газодинамічне накачування.
- •Метод накачування допоміжним випромінюванням (оптична накачка).
- •Накачування за допомогою газового розряду та сортуванням частинок.
- •Інжекція неосновних носіїв заряду через р-n перехід, Збудження частинками високих енергій.
- •Що таке резонатор, частоти резонатора, моди?
- •Відкритий і оптичний резонатор.
- •Добротність резонатора.
- •Плоский резонатор (пит. 19).
- •Витрати на випромінювання. Втрати в активній речовині.
- •Витрати на випромінювання. Дифракційні, на недосконалість дзеркал.
- •Витрати на раз'юстировку резонатора.
- •Конфокальний резонатор.
- •Плоско паралельний резонатор.
- •Кільцевий резонатор.
- •Резонатори з довільними сферичними дзеркалами.
- •Резонатор з брегівським дзеркалом.
- •Составний резонатор.
- •Резонатор з розподіленим зворотним зв'язком.
Принцип дії квантового підсилювача, замалювати схему.
Квантовий підсилювач – це підсилювач електромагнітних хвиль, який використовує вимушене випромінювання.
Джерело накачки створює в активному елементі інверсію населенностей між робочими рівнями Еm та En. Вхідний сигнал Iωвх на частоті ω = (Е 2 – Е1)/ħ, проходячи через активний елемент, посилюється так що на виході виходить посилений сигнал Iωвих.
Коефіцієнт посилення підсилювача, рівний відношенню Iωвих / Iωвх.
Схема лазера, принцип дії.
Для перетворення підсилювача на генератор необхідно, як завжди, ввести позитивний зворотний зв'язок, це досягається тим, що частину сигналу з виходу (наприклад, з анода лампи або з колектора транзистора) подають на вхід (наприклад, на сітку лампи, що управляє, або емітер транзистора).
У лазерах цю функцію виконують оптичні резонатори: активний елемент розміщують між двома строго паралельними один одному дзеркалами.
Методи накачки. Хімічне та газодинамічне накачування.
Хімічне. Застосовується в газових лазерах; використовується ряд хімічних реакцій, що протікають між газоподібними речовинами, в результаті яких кінцевий продукт реакції опиняється в збудженому стан.
Газодинамічне накачування. Застосовується в газових лазерах; робочий газ, нагрітий до високої температури, різко охолоджується. Переходячи в рівноважний стан, частинки (молекули) газу затримуються в найбільш довгоживучих (метастабільних) станах, внаслідок чого може бути досягнута інверсія населенності.
Метод накачування допоміжним випромінюванням (оптична накачка).
Найбільш універсальним і широко використовується для накачування твердотільних лазерів на діелектриках, рідинних лазерів, може застосовуватися в напівпровідникових і газових лазерах.
Активну речовину опромінюють потужнім електромагнітним випромінюванням, яке називається допоміжним випромінюванням або випромінюванням накачування. Це випромінювання вибирають таким образом, щоб воно поглиналося активною речовиною, переводячи активні центри з основного в збуджений стан. Джерелом накачування в оптичному діапазоні можуть бути різноманітні джерела світла, зокрема звичайні лампи розжарювання, ртутні лампи, напівпровідникові світлодіоди, джерела сонячного випромінювання і ін.
Накачування за допомогою газового розряду та сортуванням частинок.
Накачування за допомогою газового розряду. Застосовується в газорозрядних лазерах, де збудження активних атомів і молекул здійснюється за рахунок непружних зіткненні, таких, що приводять до обміну енергією частинок (вільних електронів, атомів, молекул, іонів) в хмарі газового розряду.
Сортування частинок. Використовується в пучкових мазерах. Молекули робочої речовини, що знаходяться в термодинамічній рівновазі в основному і збудженому станах просторово розділяють так, щоб в робочий об'єм потрапляли тільки збуджені молекули. Незбуджені молекули виводяться з робочого пучка. Таке розділення можливе унаслідок того, що деякі молекули, що знаходяться в основному і збудженому станах, по-різному реагують із зовнішніми електричним і магнітним полями.