
- •Тема I. Кристалічна будова металів
- •1.1. Загальна характеристика металів
- •1.2. Електронна будова атома
- •1.3. Типи міжатомних зв'язків у твердих тілах
- •1.2. Атомно-кристалічна структура металів
- •1.3. Анізотропія властивостей металів.
- •1.4. Дефекти кристалічної будови металів
- •1.6. Методи дослідження структури
- •Тема 2. Кристалізація металів
- •2.1. Первинна кристалізація металів
- •2.2. Будова металевого злитка
- •2.3. Поліморфні перетворення
- •Тема 3. Основи теорії сплавів
- •3.1. Основні поняття та визначення. Типи сплавів
- •3.2.Основні типи діаграм стану подвійних сплавів
- •3.3. Зв’язок між типом діаграми стану, складом і властивостями сплавів
- •Тема 4. Пластична деформація та механічні властивості металів і сплавів
- •4.1. Напруження, що виникають у металі при навантаженні. Пружна та пластична деформація. Вплив пластичної деформації на структуру і властивості металу
- •4.2. Вплив нагріву деформованого металу на його структуру та властивості
- •4.3. Механічні властивості металів і сплавів
- •4.4. Теоретична і реальна міцність металів та шляхи її підвищення
- •Тема 5. Залізо та його сплави
- •5.1. Компоненти і фази залізовуглецевих сплавів
- •5.2. Процеси, які відбуваються при температурах, які відповідають лініям діаграми стану “залізо – цементит”
- •5.3. Вуглецеві сталі
- •5.3.1. Вплив постійних домішок на властивості сталі
- •5.3.2. Класифікація та маркування вуглецевих сталей
- •5.4.Чавуни
- •5.4.1. Вплив хімічного складу і швидкості охолодження на структуру і властивості чавуну.
- •Тема 6.Теорія термічної обробки сталі
- •6.1. Сутність, призначення та класифікація видів термічної обробки
- •6.2. Перетворення в сталі при її нагріванні
- •6.3. Перетворення, що відбуваються в сталі при її охолодженні
- •6.4. Перетворення, що відбуваються у сталі при відпусканні
- •7.2. Відпалювання
- •7.3.Нормалізація сталі
- •7.4. Гартування сталі
- •7.5. Відпускання
- •7.6. Термомеханічна обробка (тмо) сталі
- •Тема 8. Хіміко-термічна обробка сталі
- •8.1. Сутність, призначення та основні процеси, що відбуваються при хіміко-термічній обробці сталі
- •8.2. Цементація сталі
- •8.3. Азотування сталі
- •8.4. Ціанування (нітроцементація) сталі
- •8.5. Дифузійне насичення металами (металізація) і неметалами.
- •Тема 9. Леговані сталі
- •9.1. Вплив легуючих елементів на поліморфізм заліза і на ферит
- •9.2. Вплив легуючих елементів на перетворення в сталі
- •9.3. Класифікація та маркування легованих сталей
- •9.4.Конструкційні леговані сталі
- •9.5.Інструментальні сталі
- •9.6. Корозійностійкі (нержавіючі) сталі
- •Тема 9. Кольорові метали та сплави
- •9.1. Алюміній і сплави на його основі
- •Деформівні алюмінієві сплави
- •Ливарні алюмінієві сплави
- •9.2. Магній та його сплави
- •9.3. Титан і його сплави
- •Сплави на основі титану
- •9.4. Мідь і її сплави
- •9.4.1Латуні
- •9.4.2.Бронзи
- •9.4.2.1.Олов’яні бронзи
- •9.4.2.2.Алюмінієві бронзи
- •9.4.2.3.Кремнієві бронзи
- •9.4.2.4.Берилієві бронзи
- •9.5. Підшипникові (антифрикційні) сплави
- •Тема 11. Неметалеві матеріали
- •11. 1. Пластичні маси 11.1.1. Пластичні маси, їх властивості та склад
- •11.1.2. Термопластичні пластмаси(термопласти)
- •11.1.3. Термореактивні пластмаси (реактопласти)
- •11.2. Гумові матеріали
- •Література
9.4. Мідь і її сплави
Мідь – метал червоного, а у зломі - рожевого кольору. Її атомний номер 29, атомна маса 63,54, температура плавлення 1083оС, густина 8940 кг/м3. Мідь має гранецентровану кристалічну гратку з параметром а=0,3608 нм,. Характерною особливістю міді є її висока електропровідність (=0,0178 Ом см2/м) і теплопровідність. За цими параметрами вона поступається лише сріблу.
Мідь має високу стійкість до корозії, її легко обробляти тиском, паяти і зварювати, проте вона має невисокі ливарні властивості і погано обробляється різанням. Оскільки механічні властивості чистої міді відносно низькі (В=250 МПа, твердість 45НВ, =50%), то як конструкційний матеріал її застосовують дуже рідко, переважно – як провідниковий матеріал.
Підвищення механічних властивостей досягається утворенням різних сплавів на мідній основі – латуней і бронз. Легують мідь цинком, оловом, алюмінієм, кремнієм, марганцем, нікелем, берилієм та іншими елементами. Ці елементи підвищують твердість і міцність мідних сплавів, практично не знижуючи пластичність, а окремі з них (цинк, олово, алюміній) навіть підвищують її. Алюміній, марганець і олово поліпшують стійкість до корозії, олово, кремній і марганець у певних концентраціях підвищують антифрикційні властивості сплавів міді. Залізо сприяє подрібненню зерна, а кремній – підвищує ливарні властивості.
Легуючі елементи у сплавах міді позначають такими літерами: А - алюміній, Б – берилій, Ж – залізо, К – кремній, Мц – марганець, Н – нікель, О – олово, С – свинець, Ф – фосфор, Ц – цинк.
9.4.1Латуні
Латуні – це дво- або багатокомпонентні мідні сплави, в яких основним легуючим елементом є цинк. Двокомпонентні латуні системи Cu-Zn відносять до простих, а багатокомпонентні, які містять ще й інші елементи – до спеціальних.
Завдяки поєднанню добрих технологічних і непоганих механічних властивостей латуні найбільш поширені серед мідних сплавів.
Структура простих латуней у рівноважному стані описується діаграмою стану Cu-Zn (рис.9.3), яка складається з двох діаграм з перитектичним перетворенням. Відповідно до неї при вмісті цинку до 39 % латуні мають структуру однофазного -твердого розчину цинку в міді. Такі латуні мають високу пластичність, добре оброблюються тиском при низьких і високих температурах. Максимальну пластичність мають латуні, що містять 37 % Zn.
При вмісті Zn>39% у структурі латуні з’являється -фаза – впорядкований твердий розчин на основі електронної сполуки CuZn, тобто структура латуні стає двофазною (+). Такі латуні мають підвищену міцність і твердість, але низьку пластичність.
З появою у структурах твердої і крихкої -фази від початку до концентрації 45 % спостерігається інтенсивне збільшення міцності, а перехід до однофазного стану (фаза ) зумовлює раптовий спад σв . Таким чином, латуні з вмістом цинку понад 45 % характеризуються низькою міцністю, тому практичного застосування в техніці не мають.
Для підвищення механічних властивостей та хімічної стійкості латуней до них часто додають легуючі елементи. Так, алюміній, марганець, залізо і кремній підвищують міцність і твердість, однак при цьому знижують її пластичність. Алюміній, марганець, олово і нікель підвищують корозійну стійкість латуней.
За технологічною ознакою латуні поділяються на деформівні та ливарні.
До деформівних латуней належать однофазні (α) і двофазні (α+). Маючи дуже високу пластичність, однофазні латуні легко обробляються тиском в холодному і гарячому стані. Щоправда, холодна пластична деформація не лише істотно підвищує міцність і твердість, а й зменшує пластичність (явище наклепу). При потребі наклеп можна зняти рекристалізаційним відпалюванням при температурі 500...600 оС. Двофазні латуні в холодному стані менш пластичні, тому обробляти їх тиском рекомендується при температурах понад 700 оС.
Двокомпонентні латуні маркують літерою Л і числом, яке вказує вміст міді у сплаві, %, наприклад, Л96, Л90, Л62. У латуні марки Л90 вміст міді становить 90%, решта (10%) – Zn. Якщо латунь додатково легована іншими елементами, то після літери Л ставляться літери, що вказують легуючі елементи, а після них число, що вказує вміст міді в %, та числа, які вказують вміст легуючих елементів (у тому ж порядку). Наприклад, ЛЖМц 59-1-1 – це латунь, що містить 59 % Cu, 1 % Fe, 1 % Mn.
З латуней виготовляють трубки теплообмінників (Л70), гільзи патронів (Л68, Л70), прутки, дріт, стрічки тощо.
Рис.
9.3. Діаграма стану Cu-Zn
Ливарні латуні використовуються для фасонного лиття. Це в основному складнолеговані сплави. Легуючі елементи впливають на ливарні властивості латуней по різному. Наприклад, залізо і марганець знижують рідкотекучість, а олово (при вмісті до 2,5 %) її підвищує. Ливарні латуні маркують таким чином: після літери Л ставлять літеру Ц (цинк) та число, яке вказує вміст цинку в сплаві (у відсотках), потім літери та числа, які вказують легуючі елементи та їх вміст (також у відсотках). Наприклад, ЛЦ23А6Ж3Мц2 – це ливарна латунь, яка містить 23 % Zn, 6 % Al, 3 % Fe, 2 % Mn, решта – Cu.
З ливарних латуней виготовляють сантехнічну арматуру (ЛЦ40С), гайки, вінці черв’ячних коліс (ЛЦ23А6Ж3Мц2), шестерні, втулки підшипників (ЛЦ38Мц2С2) тощо.