
- •Курс лекций по дисциплине
- •Оглавление
- •Введение
- •1. Общая характеристика цветных металлов и сплавов
- •1.1. Классификация цветных металлов и сплавов
- •1.2. Сопоставительная характеристика цветных металлов
- •2. Медь и сплавы на ее основе
- •2.1. Свойства и применение меди
- •2.2. Классификация и маркировка сплавов на медной основе
- •2.3. Структура, свойства и применение латуней
- •2.4. Структура, свойства и применение бронз
- •2.5. Некоторые другие сплавы на основе меди
- •3. Алюминий и сплавы на его основе
- •3.1. Свойства и применение алюминия
- •3.2. Классификация и общая характеристика алюминиевых сплавов
- •3.3. Деформируемые алюминиевые сплавы
- •3.4. Литейные алюминиевые сплавы
- •3.5 Спеченные сплавы на основе алюминия
- •4. Магний и сплавы на его основе
- •4.1. Свойства и применение магния
- •4.2. Общая характеристика и классификация магниевых сплавов
- •4.3. Деформируемые магниевые сплавы
- •4.4. Литейные магниевые сплавы
- •6 Бериллий и сплавы на его основе
- •6.1. Бериллий, его свойства и применение
- •6.2. Сплавы на основе бериллия
- •7. Легкоплавкие металлы и сплавы на их основе
- •7.1. Общая характеристика легкоплавких металлов
- •7.2. Подшипниковые сплавы (антифрикционные материалы)
- •7.2.2. Легкоплавкие подшипниковые сплавы с мягкой
- •7.3. Припои
- •7.4. Легкоплавкие сплавы
- •7.5. Типографские сплавы
- •7.6. Цинковые конструкционные сплавы
- •7.7. Коррозионно-стойкие покрытия
- •8. Тугоплавкие и благородные металлы и сплавы
- •8.1. Общая характеристика тугоплавких металлов и их сплавов
- •8.2. Специфика применения тугоплавких металлов и сплавов в
- •8.3. Благородные металлы
- •9. Основы технологии термической обработки цветных металлов и сплавов
8.2. Специфика применения тугоплавких металлов и сплавов в
машиностроении и исследовательских приборах
Вольфрам, молибден, тантал и сплавы на их основе, учитывая их высокое электрическое сопротивление, используют для изготовления нагревательных элементов высокотемпературных (выше 1200С) термических печей (в виде проволоки и ленты, площадь поперечного сечения которых зависит от необходимой мощности печи), а также нагревательных устройств исследовательских приборов и установок, например, высокотемпературных рентгеновских установок, электронных микроскопов и т.д., для проведения исследований при высоких температурах (до 2500 С). Учитывая высокую окисляемость тугоплавких металлов, такие нагревательные элементы должны работать в вакууме, либо в атмосфере инертных газов.
Тугоплавкие металлы, прежде всего, тантал, сплав ниобия с танталом и в отдельных случаях - молибден, являются самыми кислотостойкими металлическими материалами. Их применение целесообразно в средах, в которых другие материалы не обладают достаточной коррозионной стойкостью: неорганических концентрированных кислотах при повышенных температурах, некоторых промышленных средах. Ниобий уступает танталу по коррозионной стойкости, но является заметно более дешевым. Добавка к ниобию молибдена и тантала повышает коррозионную стойкость сплава. Сплав Nb + 25% Ta по коррозионной стойкости в кислотах значительно превосходит чистый ниобий и приближается к танталу. Титан при его содержании до 10% не ухудщает коррозионную стойкость ниобия, поэтому в качестве кислотостойкого находят применение тройные сплавы Nb + Ta + Ti. Молибден и вольфрам по стойкости в кипящих кислотах значительно превосходят ниобий и мало уступают танталу, однако, при их использовании для изготовления химической аппаратуры возникают значительные технологические трудности, что ограничивает их применение.
В качестве конструкционных жаропрочных материалов используют обычно не чистые металлы, а их сплавы. При этом ниобий и тантал обычно легируют в больших количествах молибденом, титаном, вольфрамом. Молибден легируют вольфрамом и в небольших количествах - танталом и цирконием. Выбор сплава определяется не только его жаропрочностью, но и технологичесими свойствами и экономической целесообразностью. Так, хрупкие и нетехнологичные сплавы вольфрама, как и чистый вольфрам, применяют обычно при рабочих температурах, превышающих 2000 С, в условиях сильного эрозионного износа. Сплавы на основе тантала, являющиеся самыми дорогими, применяют для наиболее ответственных элементов. В интервале рабочих температур 1000-1500 С используют преимущест-венно сплавы на основе ниобия и молибдена. Сплавы молибдена являются наиболее жаропрочными, поэтому их применяют при температурах выше 1200 С и иногда до 2000 С.
Ниобий и сплавы на его основе легче других материалов переходят в сверхпроводящее состояние. Чистый ниобий имеет самую высокую критическую температуру перехода в сверхпроводящее состояние: 9,17 К
(- 263,83 С). Практическое использование находят сверхпроводящие сплавы 65 БТ (в среднем 65% Nb, 25% Ti, 10% Zr) с Ткр=9,7 К, 35 БТ ( 35% Nb, 62% Ti, 3% Zr). Эти сплавы применяют для обмоток мощных генераторов, магнитов большой мощности (например, в поездах на магнитной подушке), туннельных диодов для компьютеров.