
- •Справочный материал по геометрии.
- •Окружности.
- •Синус, косинус и тангенс острого угла прямоугольного треугольника
- •Внешний угол треугольника. Синус и косинус внешнего угла
- •Высота в прямоугольном треугольнике
- •Сумма углов треугольника
- •Углы при параллельных прямых и секущей. Вертикальные, смежные, односторонние, соответственные, накрест лежащие углы
- •Элементы треугольника. Высоты, медианы, биссектрисы
- •Четырехугольники. Сумма углов четырехугольника. Параллелограмм. Виды параллелограммов и их свойства. Ромб, прямоугольник, квадрат. Трапеция и ее свойства
- •Ромб и его свойства
- •Прямоугольник и его свойства
- •Квадрат — определение и свойства
- •Трапеция и ее свойства
- •Окружность. Центральный и вписанный угол
- •Касательная к окружности
- •Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов
- •Вписанные и описанные четырехугольники
Прямоугольник и его свойства
Прямоугольник — это параллелограмм, у которого все углы прямые.
Диагонали прямоугольника равны.
1. В прямоугольнике диагональ делит угол в отношении 1:2, меньшая его сторона равна 6. Найдите диагональ данного прямоугольника.
Всё просто. Рассмотрите прямоугольный треугольник АВС. Найдите, чему равен угол САВ и его синус, а затем найдите АС.
Ответ: 12.
А сейчас рассмотрим еще одну задачу, в которой применяются свойства диагоналей прямоугольника.
2. Острые углы прямоугольного треугольника равны 24° и 66°. Найдите угол между высотой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.
Казалось бы, при чем здесь прямоугольник? Дан прямоугольный треугольник, из вершины прямого угла проведены высота и медиана. А что можно сказать о длине этой медианы?
Давайте достроим чертеж до прямоугольника. Поскольку диагонали прямоугольника равны (это свойство прямоугольника) и делятся пополам в точке пересечения, отрезки СМ, ВМ и АМ тоже будут равны. Каждый из них равен половине диагонали прямоугольника. Мы доказали теорему:
В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.
Итак, ВМ = СМ, значит, треугольник ВМС равнобедренный, и угол ВСМ равен 24°.
По свойству высоты, проведенной из вершины прямого угла, ∠АСН = ∠АВС = 24°.
Тогда угол МСН (между медианой и высотой треугольника АВС) равен 90° - 24° - 24° = 42°. Ответ: 42.
Как вы думаете, где находится центр окружности, описанной вокруг прямоугольного треугольника? Ведь центр описанной окружности — точка, равноудаленная от всех вершин треугольника. Очевидно, эта точка — середина гипотенузы.
В прямоугольном треугольнике центром описанной окружности является середина гипотенузы.
1. Найдите диагональ прямоугольника, вписанного в окружность, радиус которой равен 5.
Проведем диагональ АС. Получим, что АС равна 2R. Ответ: 10.
EGE-Study » Методические материалы » Геометрия: с нуля до C4 » Квадрат и его свойства
Начало формы
Конец формы
Квадрат — определение и свойства
Квадрат — это прямоугольник, у которого все стороны равны. Можно дать и другое определение квадрата: квадрат — это ромб, у которого все углы прямые.
Получается, что квадрат обладает всеми свойствами параллелограмма, прямоугольника и ромба.
Перечислим свойства квадрата:
Все углы квадрата — прямые, все стороны квадрата — равны.
Диагонали квадрата равны и пересекаются под прямым углом.
Диагонали квадрата делят его углы пополам.
Площадь
квадрата, очевидно, равна квадрату его
стороны: S
= a2.
Диагональ квадрата равна произведению
его стороны на
,
то есть
,
Разберем несколько простых задач на тему «Квадрат». Все они взяты из Банка заданий ФИПИ.
1.
Найдите сторону квадрата, диагональ
которого равна
.
Мы знаем,
что
.
Тогда
.
2.
Найдите радиус окружности, описанной
около квадрата со стороной, равной
.
Очевидно, радиус окружности равен диагонали квадрата.
Ответ: 4.
3. Найдите сторону квадрата, описанного около окружности радиуса 4.
Диаметр окружности равен стороне квадрата.
Ответ: 8.
4.
Найдите радиус окружности, вписанной
в квадрат ABCD,
считая стороны квадратных клеток равными
.
Чуть более сложная задача. Нарисуйте окружность, вписанную в данный квадрат, то есть касающуюся всех его сторон. Вы увидите, что диаметр этой окружности равен стороне квадрата.
Ответ: 2.
5.
Найдите радиус r окружности,
вписанной в четырехугольник ABCD.
В ответе укажите
.
Считаем стороны клеток равными единице. Четырехугольник ABCD — квадрат. Все его стороны равны, все углы — прямые. Как и в предыдущей задаче, радиус окружности, вписанной в квадрат, равен половине его стороны.
Найдем
на чертеже прямоугольный треугольник.
По теореме Пифагора найдем сторону,
например, АВ.
Она равна
.
Тогда радиус вписанной окружности равен
.
В ответ запишем
.
Ответ: 5.