
- •И.Е. Оглоблина Учебное пособие по дисциплине «статистика»
- •080504.65 - Государственное и муниципальное управление
- •Содержание
- •Тема 3 Статистика макроэкономических расчетов, система национальных счетов 86
- •Тема 4 Статистика национального богатства 94
- •Тема 5 Статистическая оценка уровня жизни населения 102
- •Раздел 1 Общая статистика Предисловие
- •Тема 1 Предметная область статистической науки
- •1.1 Возникновение статистики как науки
- •1.2 Предмет и метод статистики
- •1.3 Организация статистики в Российской Федерации
- •Вопросы:
- •2 Статистическое наблюдение
- •2.1 Понятие о статистическом наблюдении, этапы, формы, виды и способы статистического наблюдения
- •Вопросы:
- •Глава 3 Абсолютные и относительные статистические величины
- •3.1 Понятие абсолютной и относительной величины в статистике
- •3.2 Виды и взаимосвязи относительных величин
- •Вопросы:
- •Тема 4 Классификации и группировки
- •4.1 Классификация и группировка как метод обработки и анализа первичной статистической информации
- •4.2 Основные приемы построения и выполнения группировок
- •4.3 Виды группировок. Статистическая таблица
- •3.5. Графическое представление статистических данных
- •Вопросы:
- •Тема 5 Средние величины в анализе финансовых показателей
- •5.1 Понятие средней величины. Степенные средние.
- •5.1.1. Средняя арифметическая и ее свойства
- •5.1.2 Средняя гармоническая.
- •5.1.3 Средняя геометрическая
- •5.1.4 Средняя квадратическая величина
- •5.2 Медиана и мода - структурные (распределительные) средние величины
- •Вопросы:
- •Тема 6 Ряды распределения
- •6.1 Ряды распределения и их построение
- •6.2 Кривые распределения и критерии согласия
- •Вопросы:
- •Тема 7 Выборочное наблюдение
- •7.1 Основы выборочного метода
- •7.2 Ошибки выборки
- •7.3 Способы отбора единиц из генеральной совокупности
- •Вопросы:
- •Тема 8 Корреляционная связь и ее анализ
- •8.1 Сущность корреляционной связи. Корреляционно-регрессионный метод анализа
- •8.2 Непараметрические показатели связи
- •Вопросы:
- •Тема 9 Ряды динамики и их применение в анализе
- •9.1 Ряды динамики и их виды
- •9.2 Показатели изменений уровней динамических рядов
- •9.3 Способы обработки динамического ряда
- •9.4 Статистические таблицы и графики
- •Вопросы:
- •Тема 10 Индексы и их использование в статистике
- •10.1 Индексы, их общая характеристика и сфера применения
- •10.2 Индексы количественных показателей
- •10.3 Индексы качественных показателей. Факторный анализ
- •Вопросы:
- •Социально-экономическая статистика Тема 1 Статистика населения и занятости
- •1.1 Основные показатели численности населения и методика их расчета
- •1.2 Анализ естественного движения и миграции населения
- •1.3 Трудовые ресурсы и занятость
- •1.4 Статистический анализ безработицы
- •Вопросы:
- •2 Статистика оплаты труда
- •2.1 Фонд заработной платы
- •2.2 Статистические показатели использования трудовых ресурсов предприятия
- •2.3 Показатели производительности труда
- •Вопросы:
- •Тема 3 Статистика макроэкономических расчетов, система национальных счетов
- •3.1 Понятие и структура системы национальных счетов (снс)
- •3.2 Система показателей и общие принципы построения снс
- •3.3 Методы расчета показателей ввп и нд
- •3.4 Распределительный метод
- •3.5 Метод конечного использования
- •3.6 Переоценка ввп в постоянных ценах
- •Вопросы:
- •Тема 4 Статистика национального богатства
- •4.1 Национальное богатство в системе макроэкономической статистики. Состав национального богатства
- •4.2 Статистика основных фондов
- •4.3 Статистика материальных оборотных фондов
- •Тема 5 Статистическая оценка уровня жизни населения
- •5.1 Статистика потребления материальных благ и услуг
- •5.2 Показатели статистики доходов населения
- •Данные к расчетному заданию по вариантам
- •Список использованных источников
- •Учебное пособие по дисциплине «Статистика» для студентов специальности 080504.65 - Государственное и муниципальное управление
- •656038, Г.Барнаул, пр-т Ленина,46
- •656038 Г.Барнаул, пр-т Ленина, 46
- •656038 Г.Барнаул, пр-т Ленина, 46
8.2 Непараметрические показатели связи
В статистической практике могут встречаться такие случаи, когда качества факторных и результативных признаков не могут быть выражены численно. Поэтому для измерения тесноты зависимости необходимо использовать другие показатели. Для этих целей используются так называемые непараметрические методы.
Наибольшее распространение имеют ранговые коэффициенты корреляции, в основу которых положен принцип нумерации значений статистического ряда. При использовании коэффициентов корреляции рангов коррелируются не сами значения показателей х и у, а только номера их мест, которые они занимают в каждом ряду значений. В этом случае номер каждой отдельной единицы будет ее рангом.
Коэффициенты корреляции, основанные на использовании ранжированного метода, были предложены К. Спирмэном и М. Кендэлом.
Коэффициент корреляции рангов Спирмэна (р) основан на рассмотрении разности рангов значений результативного и факторного признаков и может быть рассчитан по формуле:
где d = Nx - Ny , т.е. разность рангов каждой пары значений х и у;
n - число наблюдений.
Ранговый коэффициент корреляции Кендэла (τ) можно определить по формуле:
где S = P + Q.
К непараметрическим методам исследования можно отнести коэффициент ассоциации Кас и коэффициент контингенции Ккон , которые используются, если, например, необходимо исследовать тесноту зависимости между качественными признаками, каждый из которых представлен в виде альтернативных признаков.
Для определения этих коэффициентов создается расчетная таблица (таблица «четырех полей»), где статистическое сказуемое схематически представлено в следующем виде:
Признаки |
А (да) |
А (нет) |
Итого |
В (да) |
a |
b |
a + b |
В (нет) |
с |
d |
c + d |
Итого |
a + c |
b + d |
n |
где а,
b, c, d -
частоты взаимного сочетания (комбинации)
двух альтернативных признаков
;
n - общая сумма частот.
Коэффициент ассоциации можно расcчитать по формуле:
Коэффициент контингенции рассчитывается по формуле:
Нужно иметь в виду, что для одних и тех же данных коэффициент контингенции (изменяется от -1 до +1) всегда меньше коэффициента ассоциации.
Если необходимо оценить тесноту связи между альтернативными признаками, которые могут принимать любое число вариантов значений, применяется коэффициент взаимной сопряженности Пирсона (КП ).
Для исследования такого рода связи первичную статистическую информацию располагают в форме таблицы:
Признаки |
A |
B |
C |
Итого |
D |
m11 |
m12 |
m13 |
∑m1j |
E |
m21 |
m22 |
m23 |
∑m2j |
F |
m31 |
m32 |
m33 |
∑m3j |
Итого |
∑mj1 |
∑mj2 |
∑mj3 |
П |
где mij - частоты взаимного сочетания двух атрибутивных признаков;
П - число пар наблюдений.
Коэффициент взаимной сопряженности Пирсона определяется по формуле:
где φ2 - показатель средней квадратической сопряженности:
Коэффициент взаимной сопряженности изменяется от 0 до 1.
Наконец, следует упомянуть коэффициент Фехнера, характеризующий элементарную степень тесноты связи, который целесообразно использовать для установления факта наличия связи, когда существует небольшой объем исходной информации. Данный коэффициент определяется по формуле:
где na - количество совпадений знаков отклонений индивидуальных величин от их средней арифметической;
nb - соответственно количество несовпадений.
Коэффициент Фехнера может изменяться в пределах -1,0 ≤ Кф ≤ +1,0.