
- •Спеціальні прилади і методи для автоматичного контролю і вимірювання складу рідин та рідких продуктів.
- •Тема 10. Оптичні методи аналізу розчинів.
- •10.1. Фотоелектричні рефрактометри.
- •10.1.1. Характеристика методу.
- •10.1.2. Рефрактометр з диференціальною кюветою.
- •10.1.3. Рефрактометр з використанням принципу повного внутрішнього відбивання.
- •10.2. Абсорбційно-оптичний метод вимірювання концентрації
- •10.2.1. Теоретичні основи методу.
- •10.2.2. Схеми абсорбціометрів.
- •10.3. Люмінесцентний метод.
- •10.3.1. Теоретичні основи люмінесцентного методу.
- •10.3.2. Оптичні схеми приладів.
- •Поляризаційно-оптичні методи.
- •10.5. Фотоелектричні нефелометри і турбідиметри
10.2. Абсорбційно-оптичний метод вимірювання концентрації
10.2.1. Теоретичні основи методу.
В основі абсорбційно-оптичного методу аналізу складу рідин лежить властивість розчинів розрізнятися по складу та по здатності поглинати (абсорбувати) випромінювання оптичного діапазону. Кількісні співвідношення цього явища описуються законом Бугера-Ламберта-Бера:
(4)
або
;
,
де
—
монохроматичний потік випромінювання,
що виходить із шару розчину товщиною
l; T
і
— коефіцієнт
пропуcкання й оптична густина розчину
товщиною l
на довжині хвилі випромінювання
,
-.
монохроматичний потік випромінювання,
що входить у шар розчину;
— коефіцієнт поглинання випромінювання
речовиною; C — концентрація поглинаючого
розчину.
Якщо в розчині міститься п компонентів, то його оптична щільність залежить від коефіцієнтів поглинання і концентрацій усіх компонентів
(5)
Рівняння (5) показує,
що для вибіркового вимірювання одного
компонента необхідно, щоб коефіцієнти
поглинання неконтрольованих компонентів
(
)
були значно менше коефіцієнта
контрольованого
компонента, тобто
.
Таким чином, довжину хвилі випромінювання
для вимірювання концентрації абсорбційним
методом вибирають з обліком двох умов:
коефіцієнт поглинання обумовленого
компонента повинний мати можливо велику
абсолютну величину; коефіцієнти
поглинання інших компонентів повинні
бути менше коефіцієнта контрольованої
речовини.
Молекули різних речовин, що складаються більш ніж із двох різних атомів, володіють характерними тільки для них спектрами і смугами поглинання випромінювання. Це визначає універсальність і широке застосування методу для аналізу складу розчинів.
У залежності від того, у якій спектральній області працюють абсорбціометри, їх підрозділяють на інфрачервоні (ІЧ) аналізатори, аналізатори ультрафіолетового поглинання і фотометри або фотоколориметри (поглинання у видимій частині спектра). При абсорбційно-оптичному методі аналізу використовують інфрачервону, видиму й ультрафіолетову області спектра.
10.2.2. Схеми абсорбціометрів.
Для побудови абсорбціометрів застосовують різні вимірювальні схеми в залежності від розв'язуваних аналітичних задач і вимог до метрологічних характеристик. Схеми абсорбціометрів можуть відрізнятися між собою числом довжин хвиль (каналів) і кювет (променів), що беруть участь у вимірювальному процесі, а також способом порівняння сигналів, одержуваних у проміжних перетворювачах (вирахування, розподіл, множення та ін.).
Найбільш поширені два типи вимірювальних схем — одноканальні двопроменеві і двоканальні однопроменеві. Аналізатори, засновані на одноканальних двопроменевих схемах мають мінімальні похибки від зміни спектральних характеристик випромінювача, приймача випромінювання й інших елементів. Однак похибки таких приладів великі через неоднаковість забруднення вікон кювет і наявність інших елементів на шляху променів.
Двоканальні однопроменеві схеми забезпечують мінімальні похибки аналізаторів від забруднення вікон кювети і трохи більші похибки від зміни спектральних характеристик елементів схеми. На рис.6 приведена типова схема таких приладів.
Рис.6. Функціональна схема двоканального однопроменевого інфрачервоного аналізатора. 1-привод компенсаційної заслінки; 2-дзеркало;3 і 12- робочий та зрівняльний світлофільтр; 4 і 11-компенсаційна та нульова заслінки; 5-привод нульової заслінки; 6-давач положення обтюратора; 7-світлороздільне дзеркало; 8-кювета; 9-випромінювач; 10-обтюратор; 13-приймач; 14-підсилювач;15-фазочутливий детектор; 16-підсилювач.
Для досягнення необхідних метрологічних характеристик і їхньої стабільності в часі одноканальні двопроменеві аналізатори вимагають ретельної фільтрації від механічних домішок розчину, що надходить у робочу кювету, а двоканальні однопроменеві аналізатори — забезпечення стабільності спектральних характеристик елементів, що досягається стабілізацією живлення і температури.
На рис.7 показана
комбінована вимірювальна схема (подвійна
одноканальна двопроменева), позбавлена
недоліків
попередньої схеми.
Особливість
роботи таких аналізаторів полягає в
тому, що при повороті диска обтюратора
11
світлофільтри 4
і 10
по черзі вводяться в потоки випромінювання,
що направляються на робочу 5
і порівняльну 9
кювети. Приймач випромінювання 6
роздільно в часі видає електричні
сигнали
і
пропорційні монохроматичному потоку
з довжиною хвилі
після проходження робочої і порівняльної
кювет, і аналогічні сигнали
і
при довжині хвилі випромінювача
.
Пристрій 7 виконує операції, у результаті
яких покази аналізатора
(6)
де k — коефіцієнт пропорційності.
Рис.7. функціональна схема комбінованого інфрачервоного перетворювача
1 — випромінювач; 2 — дзеркала; 3 — датчик положення світлофільтрів; 4 і 10 — світлофільтри; 5 і 9 — робоча і зрівняльна кювети; 6 — приймач випромінювання; 7 — обчислювальний пристрій; 8-вторинний прилад; 11 - диск обтюратора
Представивши величини в (6) через коефіцієнти перетворення відповідних елементів схеми, неважко показати, що покази аналізатора залежать лише від коефіцієнтів пропускання, складу і товщини шару рідини у кюветах:
.
Розвиток і впровадження мікро-ЕОМ відкрило можливість створення якісно нових абсорбціометрів — багатоканальных приладів для аналізу повного складу багатокомпонентних розчинів (рис.8).
Робота такого аналізатора заснована на вимірюванні оптичних густин розчину при різних довжинах хвиль випромінювання і рішенні системи рівнянь наступного виду:
(7)
де п — число компонентів у розчині.
Рис. 8. Функціональна схема багатоканального інфрачервоного аналізатора
1- випромінювач ; 2 — обтюратор; 3 —світлофільтр з регульованою спектральною характеристикою; 4 — давач положення світлофільтра; 5 — привід світлофільтра; 6 — кювета; 7 — приймач; 8 — мікропроцесор; 9 — вторинний прилад.
Абсорбційно-оптичні аналізатори рідин дозволяють аналізувати концентрацію: азотної кислоти в будь-яких діапазонах; води в метанолі, ацетоні, етиловому спирті, меланжі, сірчаній й азотній кислотах, оцтовій кислоти, оцтовому ангідриду й ін.; органічних мікродомішок у стічних водах; олій у розчинниках і ін. Основна похибка аналізаторів ±4 % діапазону шкали.