
- •Содержание
- •Раздел 1. Основы работы сетей Тема 1.1 Введение. Основные понятия локальной сети Компьютерная сеть. Классификация сетей
- •Основные топологии сетей: шина, звезда, кольцо, полносвязная.
- •Адресация узлов сети
- •Аппаратные, символьные, числовые составные адреса.
- •Способы передачи данных. Методы доступа и передачи информации
- •Параллельная и последовательная передача
- •Методы передачи информации: аналоговый, цифровой
- •Методы доступа к среде передачи данных
- •Тема 1.2 Структуризация больших сетей Структуризация больших сетей
- •Физическая структуризация сетей
- •Повторитель. Концентратор
- •Логическая структуризация сетей
- •Коммутатор. Маршрутизатор. Мост. Шлюз
- •Модели построения компьютерной сети
- •Тема 1.3 Сетевые модели. Модель osi. Модель ieee Project 802 Сетевые модели. Модель osi
- •М одель osi. Уровни модели osi: физический, канальный, сетевой, транспортный, сеансовый, представительский, прикладной
- •Уровни модели osi
- •Модель ieee Project 802.Х
- •Различные виды технологий Ethernet локальных сетей
- •Спецификации физической среды Ethernet
- •Тема 1.4. Пакеты. Маршрутизация пакетов Пакеты. Маршрутизация пакетов
- •Раздел 2 Протоколы передачи данных Тема 2.1 Общие сведения. Стек протоколов tcp/ip Стек протоколов tcp/ip
- •Тема 2.2 Межсетевой протокол ip Межсетевой протокол ip
- •Протоколы udp, icmp, ftp, smtp
- •Тема 2.3 Общие характеристики протокола ipx. Пакет протокола ipx, маршрутизация ipx
- •Раздел 3 Глобальные сети Тема 3.1 Структура и функции глобальных сетей. Высокоуровневые услуги
- •Тема 3.2 Типы глобальных сетей
- •Тема 3.3 Глобальные связи на основе выделенных линий Аналоговые выделенные линии
- •Модемы. Классификация модемов
- •Цифровые выделенные линии
- •Технология плезиохронной цифровой иерархии
- •Технология синхронной цифровой иерархии
- •Сети dwdm
- •Протоколы канального уровня
- •Тема 3.4 Глобальные связи на основе сетей с коммутацией каналов Аналоговые телефонные сети
- •Основные сведения об isdn
- •Цифровые абонентские линии. Технология xDsl
- •Тема3.5 Глобальные связи на основе сетей с коммутацией пакетов Техника виртуальных каналов. Сети х.25
- •Технология atm
- •Сети Frame Relay
- •Тема 3.6 Удаленный доступ Схемы глобальных связей при удаленном доступе
- •Раздел 4 Практическое построение локальных сетей Тема 4.1 Характеристики линий связи Типы линий связи. Характеристики линий связи
- •Беспроводная связь. Спутниковая и сотовая связь
- •Тема 4.2 Аппаратные средства локальных сетей Аппаратные средства локальных сетей
- •Тема 4.3 Стандарты кабелей Стандарты кабелей. Характеристики кабелей
- •Тема 4.4 Сетевые адаптеры
- •Тема 4.5 Концентраторы. Коммутаторы Концентраторы
- •Коммутаторы
- •Раздел 5 Средства анализа и управления сетями Тема 5.1 Функциональные группы задач управления сетями
- •Тема 5.2 Архитектуры системы управления сетями
- •Тема 5.3 Стандарты систем управления сетями на основе протокола snmp
- •Тема 5.4 Мониторинг, анализ и безопасность локальных сетей Классификация средств мониторинга и анализа
- •Настройка безопасности сети с помощью технических устройств
- •Сервис защищенного канала
- •Шифрование информации в сети
Способы передачи данных. Методы доступа и передачи информации
При обмене данными по каналам связи используют три метода передачи данных:
Симплексный режим - передача данных только в одном направлении (телевидение, радио);
Примером симплексного режима передачи (от передатчика к приемнику) является система, в которой информация, собираемая с помощью датчиков, передается для обработки на ЭВМ. В вычислительных сетях симплексная передача практически не используется.
Полудуплексный режим - попеременная передача информации, когда источник и приемник последовательно меняются местами (от передатчика к приемнику и от приемника к передатчику).
Яркий пример работы в полудуплексном режиме - разведчик, передающий в Центр информацию, а затем принимающий инструкции из Центра.
Дуплексный канал (дуплексный режим) обеспечивает одновременную передачу информации в обоих направлениях и может состоять из двух физических сред, каждая из которых используется для передачи информации только в одном направлении.
Дуплексный режим является наиболее скоростным режимом работы и позволяет эффективно использовать вычислительные возможности быстродействующих ЭВМ в сочетании с высокой скоростью передачи данных по каналам связи. Пример дуплексного режима - телефонный разговор.
Параллельная и последовательная передача
Параллельная и последовательная передача данных служат для обмена данными и связи между периферией (устройствами ввода/вывода) и модулем обработки данных (материнской платой), но используют различные методы и принципы обмена информацией.
Для передачи данных в информационных системах наиболее часто применяется последовательная передача. Широко используются асинхронный и синхронный методы последовательной передачи.
При асинхронной передаче каждый символ передается отдельной посылкой. Стартовые биты предупреждают приемник о начале передачи. Затем передается символ. Для определения достоверности передачи используется бит четности (бит четности равен 1, если количество единиц в символе нечетно, и 0, в противном случае). Последний бит («стоп-бит») сигнализирует об окончании передачи.
Преимущества: несложная обработанная система; недорогое (по сравнению с синхронным) интерфейсное оборудование.
Недостатки: третья часть пропускной способности теряется на передачу служебных битов (старт/стоповых и бита четности); невысокая скорость передачи по сравнению с синхронной; при множественной ошибке с помощью бита четности невозможно определить достоверность полученной информации.
Асинхронная передача используется в системах, где обмен данными происходит время от времени и не требуется высокая скорость передачи данных. Некоторые системы используют бит четности как символьный бит, а контроль информации выполняется на уровне протоколов обмена данными.
При использовании синхронного метода данные передаются блоками. Для синхронизации работы приемника и передатчика в начале блока передаются биты синхронизации. Затем передаются данные, код обнаружения ошибки и символ окончания передачи. При синхронной передаче данные могут передаваться и как символы, и как поток битов. В качестве кода обнаружения ошибки обычно используется циклический избыточный код обнаружения ошибок (CRC). Он вычисляется по содержимому поля данных и позволяет однозначно определить достоверность принятой информации.
Преимущества: высокая эффективность передачи данных; надежный встроенный механизм обнаружения ошибок.
Недостатки: интерфейсное оборудование более сложное и, соответственно, более дорогое.
Параллельная связь означает, что биты пересылаются и передаются не один за другим, а все восемь бит (или байт) одновременно (параллельно) или, точнее, друг возле друга. Такие параллельные связи имеют место не только при одноименных интерфейсах, но и внутри общей системы, например, в шине. При этом здесь принципиальным становится понятие разрядности шины.
Принцип параллельной передачи можно увидеть, если посмотреть на кабель, который подсоединен к разъему параллельного интерфейса, например на кабель принтера. Если сравнить этот кабель с кабелем мыши (последовательным), то заметно, что он толще. Дело в том, что кабель для параллельной передачи данных должен, как минимум, содержать восемь проводов, каждый из которых предназначен для транспортирования одного бита.