
- •1 Блок!!!
- •1. Сущность и значение фотосинтеза. Фотосинтез как процесс трансформации энергии света в энергию химических связей.
- •2. Масштабы фотосинтетической деятельности в биосфере.
- •3.Строение листа как органа фотосинтеза. Оптические свойства листа.
- •4. Хлоропласты.
- •5. Хлорофиллы: химическая структура, спектральные свойства
- •6. Билихромопротеиды.
- •7. Каротиноиды: химическое строение, свойства; спектры поглощения, функции в фотосинтезе.
- •8. Родопсин и пурпурные мембраны.
- •2 Блок!
- •9. Поглощение света пигментами
- •10. Миграция энергии в системе фотосинтетических пигментов. Представление о фотосинтетической единице
- •11. Преобразование в рц
- •12. Представление о совместном функционировании двух систем.
- •13.Реакции, связанные с выделением кислорода в фотосинтезе
- •14. Структура электронтранспортной цепи фотосинтеза
- •Циклический транспорт электронов
- •3 Блок!
- •16. Классификация растений по метаболизму со2 в фотосинтезе. Метаболизм углерода в процессе фотосинтеза
- •Фотосинтез по типу толстянковых (сам-матаболизм)
- •20. Показатели фотосинтеза: интенсивность, фотосинтетический потенциал, индекс листовой поверхности
- •21. Суточные и сезонные ритмы фотосинтеза
- •22. Фотосинтез и урожай
- •Дополнительные вопросы, сурс!!!
- •25. Возникновение идеи о воздушном питании растений.
- •26. Начало экспериментальных работ в области фотосинтеза.
- •27. Начало изучения роли света в процессах фотосинтеза
22. Фотосинтез и урожай
Взаимоотношения роста растений и интенсивности фотосинтеза отражают непрерывную перестройку фотосинтетического аппарата в ходе онтогенеза и динамику формирования и активности растущих (аттрагирующих) органов, потребляющих ассимиляты. Начальный этап развития листа осуществляется за счет деления и роста клеток, а затем — лишь путем растяжения. За это время делятся и развиваются хлоропласты. На ранних этапах роста (до развертывания 30—45% площади) лист сам потребляет ассимиляты из более зрелых листьев или из запасающих тканей. По мере роста листа усиливается транспорт ассимилятов из него в другие листья и органы и постепенно лист становится донором ассимилятов. Эта функция устанавливается при достижении 60—90% конечной площади листа. Взрослые листья отдают свои ассимиляты в аттрагирующие зоны растения, оставляя на собственные нужды 10—40% ассимйлятов и почти не обмениваясь между собой продуктами фотосинтеза. Последнее явление, названное А. Л. Курсановым (1961) «суровым законом», способствует лучшему распределению ассимйлятов в целом растении. Стареющие листья со слабой фотосинтетической активностью отдают другим органам не только ассимиляты, но и продукты распада структур цитоплазмы.Такого рода смена функций листа в онтогенезе важна при формировании урожая. Потребление ассимйлятов молодым листом приводит к построению добавочного фотосинтетического аппарата, чем обеспечивается увеличение фотосинтетической активности в геометрической прогрессии.Современные знания о процессе фотосинтеза как на уровне растения, так и фитоценоза, позволяют видеть основные направления оптимизации фотосинтеза и увеличения продуктивности растений. Наиболее полно вопросы фотосинтетической деятельности растений в посевах, связанной с образованием хозяйственного урожая (используемого человеком), его доли в биологическом урожае (т. е. суммарной массе всех органов растения), освещены в работах А. А. Ничипоровича.Наивысшие урожаи могут быть обеспечены созданием следующих оптимальных условий:
1) увеличением листовой поверхности в посевах;
2) удлинением времени активной работы фотосинтетического аппарата в течение каждых суток и вегетационного периода (поддержка агротехникой и минеральными удобрениями);
3) высокой интенсивностью и продуктивностью фотосинтеза, максимальными суточными приростами сухого вещества;
4) максимальным притоком продуктов фотосинтеза из всех фотосинтезирующих органов в хозяйственно важные органы и высоким уровнем использования ассимйлятов в ходе биосинтетических процессов.
Для получения высоких урожаев сельскохозяйственных культур необходима селекционно-генетическая работа, направленная на повышение интенсивности фотосинтеза, скорости оттока ассимйлятов, на увеличение чистой продуктивности фотосинтеза.
23.Зависимость фотосинтеза от факторов окружающей среды: температуры, условий освещения (интенсивности, спектрального состава света), содержания углекислоты, условий минерального питания, водоснабжения
1
ВЛИЯНИЕ НА ФОТОСИНТЕЗ ИНТЕНСИВНОСТИ И
СПЕКТРАЛЬНОГО СОСТАВА СВЕТА
По мере увеличения интенсивности света нарастание фотосинтеза становится все менее выраженным, и, наконец, при достижении определенного уровня освещенности наступает насыщение фотосинтетической активности листа.
Зависимость световых реакций фотосинтеза от интенсивности света отражает прямолинейный участок световой кривой. На этом этапе интенсивность света является лимитирующим фактором фотосинтеза. Угол наклона прямолинейного участка световой кривой характеризует эффективность использования световой энергии в ходе фотохимических реакций.
Стационарный уровень фотосинтеза достигается у разных групп растений при разной интенсивности света. Фотосинтетическая активность в области насыщающих интенсивностей света зависит главным образом от работы систем поглощения и ассимиляции углекислого газа. Чем выше положение кривой в области насыщения, тем больше мощность системы ассимиляции углекислого газа у растения. Интенсивность света влияет на характер фотохимических и метаболических процессов в хлоропластах. При низких интенсивностях света в первую очередь активируется нециклический поток электронов. Увеличение интенсивности света стимулирует циклический поток электронов и повышает долю циклического транспорта электронов в общем потоке электронов по ЭТЦ хлоропластов. В условиях избыточной освещенности циклический транспорт электронов может играть защитную роль в хлоропластах, а также служить источником энергии для дополнительного синтеза АТФ и тем самым способствовать активации процессов ассимиляции углерода. С интенсивностью света связано образование различных продуктов фотосинтеза. Так, при слабой освещенности образуются главным образом аминокислоты, тогда как синтез углеводов в хлоропластах требует высокой интенсивности света.
2 ВЛИЯНИЕ НА ФОТОСИНТЕЗ КОНЦЕНТРАЦИИ УГЛЕКИСЛОГО ГАЗА
Содержание С02 в окружающей среде является одним из важнейших факторов, определяющих скорость фотосинтеза. зависимость интенсивности фотосинтеза от концентрации С02 имеет логарифмический характер, т. е. увеличение концентрации С02 приводит к быстрому увеличению интенсивности фотосинтеза. При концентрации С02 0,06 — 0,15 % у большинства растений достигается насыщение фотосинтеза.
3 ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ФОТОСИНТЕЗ: Интегральный ответ фотосинтетического аппарата на изменения температуры может быть представлен графически в виде, как правило, одновершинной кривой, причем вершина соответствует области оптимальных для фотосинтеза температур. Для большинства С3-растений умеренной климатической зоны оптимальная для фотосинтеза температура находится в интервале 20 — 25 "С. У растений с С4-путем фотосинтеза и САМ-фотосинтезом температурный оптимумприходится на 30 — 35 °С. При дальнейшем повышении температуры фиксация С02 уменьшается вследствие снижения тургора в листьях и закрывания устьиц.
Весьма чувствительны к температуре также транспорт электронов и синтез АТФ. Первичные реакции фотосинтеза, связанные с поглощением света, миграцией энергии возбуждения в реакционные центры и разделением зарядов в реакционных центрах, от температуры практически не зависят.
4 ВЛИЯНИЕ ВОДНОГО РЕЖИМА НА ФОТОСИНТЕЗ
Значение водного режима для фотосинтеза определяется в первую очередь действием воды на состояние устьиц листа: до тех пор, пока устьица остаются оптимально открытыми, интенсивность фотосинтеза не изменяется под влиянием колебаний водного баланса. Частичное или полное закрывание устьиц, вызванное дефицитом воды в растении, приводит к нарушению газообмена и снижению поступления углекислого газа к карбоксилирующим системам листа. Вместе с тем, при водном дефиците снижается активность ферментов ВПФ цикла (цикла Кальвина), обеспечивающих регенерацию рибулозобисфосфата, и в значительной степени ингибируется фотофосфорилирование. В результате в условиях водного дефицита наблюдается ингибирование фотосинтетической активности растений. При длительном дефиците воды возможно снижение общей фотосинтетической продуктивности растений, в том числе и за счет уменьшения величины листьев, а сильное обезвоживание может в итоге вызвать нарушение структуры хлоропластов и полную потерю их фотосинтетической активности.