
- •Вопросы к экзамену по курсу "Эконометрика" для студентов экономического факультета групп 3.1 2010/11 уч. Год
- •Определение эконометрики. Предмет и методы эконометрики.
- •Классификация моделей и типы данных.
- •Этапы построения эконометрической модели.
- •Модель парной регрессии.
- •Случайный член, причины его существования.
- •Условия нормальной линейной регрессии (Гаусса-Маркова)
- •Метод наименьших квадратов.
- •Свойства коэффициентов регрессии.
- •Нелинейная регрессия. Методы линеаризации.
- •Функциональная спецификация модели парной регрессии.(Вопрос4)
- •Интерпретация линейного уравнения регрессии.
- •Определение тесноты связи между факторами: линейный коэффициент корреляции, коэффициент детерминации.
- •Оценка тесноты связи в нелинейной регрессионной модели.
- •Оценка существенности параметров и статистическая проверка гипотез. T-критерий Стьюдента.
- •Взаимосвязь t-статистики и f-статистики для парной регрессии.
- •Коэффициент эластичности. Его смысл и определение.
- •Оценка статистической значимости уравнения в целом. F-критерий Фишера.
- •Модель множественной регрессии.
- •Ограничения модели множественной регрессии.
- •Идентификация параметров множественной регрессии мнк.
- •Интерпретация множественного уравнения регрессии.
- •Показатели тесноты связи во множественном регрессионном анализе - парные и частные коэффициенты корреляции.
- •Стандартизированное уравнение множественной регрессии.
- •Коэффициент множественной корреляции, скорректированный коэффициент множественной корреляции, множественный коэффициент детерминации.
- •Оценка статистической значимости множественных коэффициентов регрессии, t-критерий Стьюдента.
- •Модели с переменной структурой (фиктивные переменные).
- •Оценка статистической значимости множественного уравнения регрессии, f-критерий Фишера.
- •Спецификация модели множественной регрессии. Свойства множественных коэффициентов регрессии.
- •Решение проблемы выбора модели (с ограничением и без ограничения).
- •Методы отбора факторов: априорный и апостериорный подходы.
- •Гетероскедастичность и автокорреляция случайного члена.
- •Автокорреляция 1-го порядка и критерий Дарбина-Уотсона.
- •Тест серий (критерий Бреуша-Годфри)
- •Тесты на гетероскедастичность: Голдфелда-Квандта, тест Уайта.
- •Системы регрессионных (одновременных) уравнений.
- •Структурная и приведенная формы модели.
- •Эндогенные и экзогенные переменные. Проблема идентифицируемости систем уравнений.
- •38. Оценивание параметров в системах одновременных уравнений: косвенный и двухшаговый мнк.
Случайный член, причины его существования.
Рассмотрим простейшую линейную модель парной регрессии:
y = a+bx+ε (2.1)
Величина y, рассматриваемая как зависимая переменная, состоит из двух составляющих: неслучайной составляющей, а+bх и случайного члена ε.
Случайная величина ε называется также возмущением. Она включает влияние не учтенных в модели факторов, случайных ошибок и особенностей измерения.
Причин существования случайной составляющей несколько.
1. Не включение объясняющих переменных. Соотношение между y и x является упрощением. В действительности существуют и другие факторы, влияющие на y, которые не учтены в (2.1). Влияние этих факторов приводит к тому, что наблюдаемые точки лежат вне прямой у = а+bх.
Часто встречаются факторы, которых следовало бы включить в регрессионное уравнение, но невозможно этого сделать в силу их количественной неизмеримости. Возможно, что существуют также и другие факторы, которые оказывают такое слабое влияние, что их в отдельности не целесообразно учитывать, а совокупное их влияние может быть уже существенным. Совокупность всех этих составляющих и обозначено в (2.1) через ε.
2. Агрегирование переменных. Рассматриваемая зависимость (2.1) – это попытка объединить вместе некоторое число микроэкономических соотношений. Так как отдельные соотношения, имеют разные параметры, попытка объединить их является аппроксимацией. Аппроксима́ция, или приближе́ние — научный метод, состоящий в замене одних объектов другими, в том или ином смысле близкими к исходным, но более простыми. Наблюдаемое расхождение приписывается наличию случайного члена ε.
3. Выборочный характер исходных данных. Поскольку исследователи чаще всего имеет дело с выборочными данными при установлении связи между у и х, то возможны ошибки и в силу неоднородности данных в исходной статистической совокупности. Для получения хорошего результата обычно исключают из совокупности наблюдения с аномальными значениями исследуемых признаков.
4. Неправильная функциональная спецификация. Функциональное соотношение между у и х математически может быть определено неправильно. Например, истинная зависимость может не являться линейной, а быть более сложной. Следует стремиться избегать возникновения этой проблемы, используя подходящую математическую формулу, но любая формула является лишь приближением истинной связи у и х и существующее расхождение вносит вклад в остаточный член.
5. Возможные ошибки измерения.
Условия нормальной линейной регрессии (Гаусса-Маркова)
Доказано, что для получения по МНК наилучших результатов (при этом оценки bi обладают свойствами состоятельности, несмещенности и эффективности) необходимо выполнение ряда предпосылок относительно случайного отклонения
Предпосылки использования МНК (условия Гаусса – Маркова)
1. Случайное отклонение имеет нулевое математическое ожидание.
Данное условие означает, что случайное отклонение в среднем не оказывает влияния на зависимую переменную.
2. Дисперсия случайного отклонения постоянна.
Из данного условия следует, что несмотря на то, что при каждом конкретном наблюдении случайное отклонение ei может быть различным, но не должно быть причин, вызывающих большую ошибку.
3. Наблюдаемые значения случайных отклонений независимы друг от друга.
Если данное условие выполняется, то говорят об отсутствии автокорреляции.
4. Случайное отклонение д.б. независимо от объясняющей переменной.
Это условие выполняется, если объясняющая переменная не является случайной в данной модели.
5. Регрессионная модель является линейной относительно параметров, корректно специфицирована и содержит аддитивный случайный член.
6. Наряду с выполнимостью указанных предпосылок при построении линейных регрессионных моделей обычно делаются еще некоторые предположения, а именно:
случайное отклонение имеет нормальный закон распределения;
число наблюдений существенно больше числа объясняющих переменных;
отсутствуют ошибки спецификации;
отсутствует линейная взаимосвязь между двумя или несколькими объясняющими переменными.