- •Вопросы к экзамену по курсу "Эконометрика" для студентов экономического факультета групп 3.1 2010/11 уч. Год
- •Определение эконометрики. Предмет и методы эконометрики.
- •Классификация моделей и типы данных.
- •Этапы построения эконометрической модели.
- •Модель парной регрессии.
- •Случайный член, причины его существования.
- •Условия нормальной линейной регрессии (Гаусса-Маркова)
- •Метод наименьших квадратов.
- •Свойства коэффициентов регрессии.
- •Нелинейная регрессия. Методы линеаризации.
- •Функциональная спецификация модели парной регрессии.(Вопрос4)
- •Интерпретация линейного уравнения регрессии.
- •Определение тесноты связи между факторами: линейный коэффициент корреляции, коэффициент детерминации.
- •Оценка тесноты связи в нелинейной регрессионной модели.
- •Оценка существенности параметров и статистическая проверка гипотез. T-критерий Стьюдента.
- •Взаимосвязь t-статистики и f-статистики для парной регрессии.
- •Коэффициент эластичности. Его смысл и определение.
- •Оценка статистической значимости уравнения в целом. F-критерий Фишера.
- •Модель множественной регрессии.
- •Ограничения модели множественной регрессии.
- •Идентификация параметров множественной регрессии мнк.
- •Интерпретация множественного уравнения регрессии.
- •Показатели тесноты связи во множественном регрессионном анализе - парные и частные коэффициенты корреляции.
- •Стандартизированное уравнение множественной регрессии.
- •Коэффициент множественной корреляции, скорректированный коэффициент множественной корреляции, множественный коэффициент детерминации.
- •Оценка статистической значимости множественных коэффициентов регрессии, t-критерий Стьюдента.
- •Модели с переменной структурой (фиктивные переменные).
- •Оценка статистической значимости множественного уравнения регрессии, f-критерий Фишера.
- •Спецификация модели множественной регрессии. Свойства множественных коэффициентов регрессии.
- •Решение проблемы выбора модели (с ограничением и без ограничения).
- •Методы отбора факторов: априорный и апостериорный подходы.
- •Гетероскедастичность и автокорреляция случайного члена.
- •Автокорреляция 1-го порядка и критерий Дарбина-Уотсона.
- •Тест серий (критерий Бреуша-Годфри)
- •Тесты на гетероскедастичность: Голдфелда-Квандта, тест Уайта.
- •Системы регрессионных (одновременных) уравнений.
- •Структурная и приведенная формы модели.
- •Эндогенные и экзогенные переменные. Проблема идентифицируемости систем уравнений.
- •38. Оценивание параметров в системах одновременных уравнений: косвенный и двухшаговый мнк.
Ограничения модели множественной регрессии.
Предположим, что связь между объясняемой
переменной
и объясняющими переменными
линейная, т.е.
.
Пусть выполняются следующие условия:
,
;
,
для любых
;
,
,
,
,
т.е. распределение
не зависит от распределения любой
объясняющей переменной
;ошибки имеют нормальный закон распределения, ;
,
т.е. ранг матрицы
должен быть равен числу оцениваемых
параметров
,
что означает отсутствие линейной
зависимости между объясняющими
переменными
.
Тогда МНК-оценка вектора
:
имеет наименьшую дисперсию в классе
всех линейных несмещенных и состоятельных
оценок.
Условия Гаусса-Маркова 1)-6) называются предпосылками МНК для случая множественной линейной регрессии.
Идентификация параметров множественной регрессии мнк.
Возможны разные виды уравнений множественной регрессии: линейные и нелинейные.
Ввиду четкой интерпретации параметров
наиболее широко используется линейная
функция. В линейной множественной
регрессии
параметры при
называются коэффициентами «чистой»
регрессии. Они характеризуют среднее
изменение результата с изменением
соответствующего фактора на единицу
при неизмененном значении других
факторов, закрепленных на среднем
уровне.
Рассмотрим линейную модель множественной регрессии
.
(2.1)
Классический подход к оцениванию
параметров линейной модели множественной
регрессии основан на методе наименьших
квадратов (МНК). МНК позволяет получить
такие оценки параметров, при которых
сумма квадратов отклонений фактических
значений результативного признака
от расчетных
минимальна:
.
(2.2)
Как известно из курса математического анализа, для того чтобы найти экстремум функции нескольких переменных, надо вычислить частные производные первого порядка по каждому из параметров и приравнять их к нулю.
Итак. Имеем функцию
аргумента:
.
Находим частные производные первого порядка:
После элементарных преобразований приходим к системе линейных нормальных уравнений для нахождения параметров линейного уравнения множественной регрессии (2.1):
(2.3)
Для двухфакторной модели данная система будет иметь вид:
Интерпретация множественного уравнения регрессии.
Интерпретация моделей регрессии осуществляется методами той отрасли знаний, к которой относится исследуемое явление. Но всякая интерпретация начинается со статистической оценки уравнения регрессии в целом и оценки значимости входящих в модель факторных признаков.
Прежде всего необходимо рассмотреть коэффициенты регрессии. Чем больше величина коэффициента регрессии, тем значительнее влияние данного признака на моделируемый.
Знаки коэффициентов регрессии говорят о характере влияния на результативный признак. Если факторный признак имеет знак плюс, то с увеличением данного фактора результативный признак возрастает; если факторный признак имеет знак минус, то с его увеличением результативный признак уменьшается.
Если экономическая теория подсказывает, что факторный признак должен иметь положительное значение, а он имеет знак минус, то необходимо проверить расчеты параметров уравнения регрессии. Такое явление чаще всего бывает в силу допущенных ошибок при решении. Однако следует иметь ввиду, что когда рассматривается совокупное влияние факторов, то в силу наличия взаимосвязей между ними характер их влияния может меняться.
С целью расширения возможностей
экономического анализа, используются
частные коэффициенты эластичности,
определяемые по формуле:
(7.11)
где:
-
среднее значение соответствующего
факторного признака;
-
среднее значение результативного
признака;
a1 - коэффициент
регрессии при соответствующем факторном
признаке.
Коэффициент эластичности показывает, на сколько процентов в среднем изменится значение результативного признака при изменении факторного признака на 1%.
Частный коэффициент детерминации:
(7.12)
где:
-
парный коэффициент корреляции между
результативным и i-ым факторным
признаком;
-
соответствующий стандартизованный
коэффициент уравнения множественной
регрессии:
(7.13)
Частный коэффициент детерминации показывает на сколько процентов вариация результативного признака объясняется вариацией i-го признака, входящего в множественное уравнение регрессии.
Полная экономическая интерпретация моделей регрессии позволяет выявить резервы развития и повышения деловой активности субъектов экономики.
