
- •Предмет физики
- •Раздел 1. Физические основы механики.
- •Глава 1. Кинематика.
- •§1.1. Инерциальные системы отсчета. Принцип относительности.
- •§1.2. Кинематика поступательного и вращательного движений.
- •§1.3. Закон (кинематическое уравнение) движения
- •§1.4. Скорость
- •§1.5. Ускорение
- •§1.6. Равномерное и равнопеременное движения.
- •§ 1.7. Связь между линейными и угловыми кинематическими характеристиками.
- •§ 1.8. Краткие итоги главы 1.
- •§ 1.9. Примеры
- •Глава 2. Динамика
- •§2.1. Задача динамики. Динамические характеристики
- •§2.2. Виды сил.
- •§2.4. Момент инерции.
- •§2.5. Момент силы.
- •§2.6. Уравнение динамики
- •§2.7. Итоги главы 2.
- •П римеры
- •Глава 3. Законы сохранения в механике.
- •§ 3.1.Фундаментальный характер законов сохранения
- •§ 3.2. Закон сохранения импульса.
- •§3.3.. Работа силы. Мощность.
- •§ 3.4. Механическая энергия.
- •§ 3.5. Закон сохранения механической энергии
- •§ 3.6. Столкновения тел
- •§ 3.5. Закон сохранения момента импульса
- •§ 3.6. Итоги главы 3
- •Примеры
- •Глава 4. Элементы специальной теории относительности
- •§ 4.1. Закон сложения скоростей. Постулат о скорости света
- •§ 4.2. Релятивистское сокращение длины и замедление времени
- •§ 4.3. Релятивистская динамика
- •Примеры
- •Раздел 4. Электромагнетизм
- •Глава 5. Электростатика
- •§ 5.1.Электрический заряд. Закон Кулона.
- •§5.2. Электрическое поле. Напряженность.
- •§ 5.3. Теорема Гаусса.
- •§ 5.4. Потенциал и работа электростатического поля.
- •§ 5.5. Связь напряженности и потенциала электростатического поля.
- •§ 5.6. Электростатическое поле в веществе.
- •§ 5.7. Электроемкость. Конденсатор.
- •§ 5.8. Энергия электрического поля.
- •Глава 6. Постоянный электрический ток.
- •§ 6.1. Электрический ток: сила тока, плотность тока
- •§ 6.2. Механизм электропроводности
- •§ 6.3. Законы постоянного тока.
- •§ 6.4. Работа и мощность тока
- •Глава 7. Магнитное поле тока
- •§ 7.1 Магнитное взаимодействие. Магнитное поле
- •§ 7.2. Закон Био-Савара-Лапласа
- •§ 7.3. Вихревой характер магнитного поля.
- •§ 7.4. Действие магнитного поля на токи и движущиеся электрические заряды
- •§ 7.5. Магнитное поле в веществе
- •Глава 8. Явление электромагнитной индукции
- •§ 8.1. Основной закон электромагнитной индукции
- •§ 8.2. Самоиндукция и взаимная индукция
- •§ 8.3. Энергия магнитного поля
- •§ 8.4. Вихревое электрическое поле. Уравнения Максвелла
§2.4. Момент инерции.
Момент инерции тела при вращательном движении является аналогом массы при его поступательном движении, а именно, служит мерой инертности тела, т.е. его способности сопротивляться изменению скорости. Из собственного опыта нам известно, что: чем дальше вращающаяся масса от оси вращения, тем труднее ускорить или замедлить ее вращение. Момент инерции, как и масса, скалярная величина. Масса (и момент инерции) тела равна сумме масс (моментов инерции) всех его частей. По определению момент инерции тела, являющегося системой материальных точек, выражает формула:
I =miri2 (2.4.1)
Здесь mi - масса точки тела с номером i, ri – ее расстояние от оси вращения; суммирование ведется по всем точкам тела. Единица измерения момента инерции в СИ обозначается кг.м2. Инертность тела при вращении зависит от распределения его массы относительно оси вращения, так что одно и то же тело относительно разных осей вращения имеет разные моменты инерции. Для сплошного однородного тела, рассматриваемого как совокупность м.т., с точки зрения математики удобно суммирование свести к интегрированию. Пусть dm – масса физически малого элемента объема dV 3, находящегося на расстоянии r от оси вращения, плотность вещества тела - (кг/м3), тогда dm= dV и момент инерции этого элемента массы dI = r2dm = r2 dV . Формула для вычисления момента инерции сплошного тела примет вид:
(2.4.2)
Интегрирование проводят по всему объему тела, это обозначено ниже знака интеграла.
Приведем формулы моментов инерции некоторых тел, часто встречающихся в практике.
а) Обруч или тонкостенный цилиндр массой m и радиусом R , вращающийся относительно своей оси симметрии.
I0 =miri2 = R2mi = m R2 (2.4.3)
б) Диск или сплошной цилиндр массой m и радиусом R , вращающийся относительно своей оси симметрии.
(2.4. 4)
Попробуйте вывести формулу (2.3.4): для этого диск представьте составленным из тонких колец, вставленных друг в друга. Радиусы этих колец плавно изменяются от 0 до R.
в) Шар, вращающийся относительно своей оси (эту формулу нетрудно получить интегрированием, перейдя в сферическую систему координат):
(2.4.5)
г) Стержень длиной l, вращающийся относительно перпендикулярной к нему оси, проходящей через его середину (получите эту формулу самостоятельно):
(2.4.6)
д) Теорема Штейнера позволяет найти момент инерции тела относительно любой оси, если известен момент инерции относительно параллельной оси, проходящей через центр инерции тела:
I=I0+mb2 (2.4.7)
Здесь I – момент инерции тела относительно рассматриваемой оси, I0 - момент инерции этого же тела относительно оси, проходящей через центр инерции и параллельной рассматриваемой, b – расстояние между этими осями. Обратите внимание, что наименьший момент инерции тела относительно любых параллельных осей в случае, когда ось проходит через цент инерции. Самостоятельно получите формулу для момента инерции стержня, если ось вращения проходит через его коней и перпендикулярна стержню.