
- •2.4.3 Ацп с плавающей точкой……………………………………………
- •1 Цифровые фильтры
- •1.1 Явление Гиббса
- •1.1.1 Сущность явления Гиббса
- •1.1.2 Параметры эффекта
- •1.1.3 Последствия для практики
- •1.2 Весовые функции
- •1.2.1 Нейтрализация явления Гиббса в частотной области
- •1.2.2 Основные весовые функции
- •1.3 Типы фильтров
- •1.4 Разностное уравнение
- •Нерекурсивные фильтры
- •1.5.1 Методика расчетов нцф
- •1.5.2 Идеальные частотные фильтры
- •1.5.3 Конечные приближения идеальных фильтров
- •1.5.3.1 Применение весовых функций
- •1.5.3.2 Весовая функция Кайзера
- •1.5.4 Дифференцирующие цифровые фильтры
- •1.5.5 Гладкие частотные фильтры
- •1.6 Рекурсивные фильтры
- •6.3 Интегрирующий рекурсивный фильтр.
- •1.6.1 Принципы рекурсивной фильтрации
- •1.6.2 Режекторные и селекторные фильтры
- •1.6.2.1 Комплексная z-плоскость.
- •1.6.2.2 Режекторные фильтры
- •1.6.2.3 Селекторный фильтр
- •1.6.3 Билинейное z-преобразование
- •1.6.4 Типы рекурсивных частотных фильтров
- •1.7 Импульсная характеристика фильтров
- •Передаточные функции фильтров
- •1.9 Частотные характеристики фильтров
- •1.10 Частотный анализ цифровых фильтров
- •1.10.1 Сглаживающие фильтры и фильтры аппроксимации
- •1.10.1.1 Фильтры мнк 1-го порядка (мнк-1)
- •1.10.1.2 Фильтры мнк 2-го порядка (мнк-2)
- •1.10.1.3 Фильтры мнк 4-го порядка
- •1.10.2 Разностные операторы
- •1.10.2.1 Разностный оператор
- •1.10.2.2 Восстановление данных
- •1.10.2.3 Аппроксимация производных
- •1.10.3 Интегрирование данных
- •1.10.4 Расчёт фильтров по частотной характеристике
- •1.11 Фильтрация случайных сигналов
- •1.12 Структурные схемы цифровых фильтров
- •Обращенные формы.
- •1.13 Фильтры Чебышева
- •1.14 Фильтры Баттерворта
- •Свойства фильтров Баттерворта нижних частот:
- •1.15 Фильтры Бесселя
- •2 Аналого-цифровое преобразование
- •2.1 Цифровая обработка звуковых сигналов
- •2.2 Основы аналого-цифрового преобразования
- •2.2.1 Основные понятия и определения
- •2.3 Структура и алгоритм работы цап
- •Контрольные вопросы
- •2.4 Структура и алгоритм работы ацп
- •2.4.1 Параллельные ацп
- •2.4.2 Ацп с поразрядным уравновешиванием
- •2.4.3 Ацп с плавающей точкой
- •Контрольные вопросы
- •Глава 3. Звук.
- •3.1 Аудиосигнал
- •3.1.1 Звуковые волны
- •3.1.2 Звук как электрический сигнал
- •3.1.3 Фаза
- •3.1.4 Сложение синусоидальных волн
- •3.2 Звуковая система
- •3.2.1 Назначение звуковой системы
- •3.2.2 Модель звуковой системы
- •3.2.3 Входные датчики
- •3.2.4 Выходные датчики
- •3.2.5 Простейшая звуковая система
- •3.3 Амплитудно-частотная характеристика
- •3.3.1 Способы записи ачх в спецификации звуковых устройств
- •3.3.2 Октавные соотношения и измерения
- •3.3.3 Ачх реальных устройств воспроизведения звука
- •3.3.4 Диапазон частот голоса и инструментов
- •3.3.5 Влияние акустических факторов
- •3.4 Единицы измерения, параметры звуковых сигналов
- •3.4.1 Децибел
- •3.4.2 Относительная мощность электрических сигналов дБm
- •3.4.3 Децибелы и уровень звука
- •3.4.5 Громкость, уровень сигнала и коэффициент усиления
- •3.4.6 Громкость
- •3.5 Динамический диапазон
- •3.5.1 Запас динамического диапазона
- •3.5.2 Выбор динамического диапазона для реальной звуковой системы
- •3.6 Цифровой звук
- •3.6.1 Частота дискретизации
- •3.6.2 Разрядность
- •3.6.3 Дизеринг
- •3.6.4 Нойс шейпинг
- •3.6.5 Джиттер
- •3.7 Методы и стандарты передачи речи по трактам связи, применяемые в современном оборудовании (7 кГц)
- •3.7.1 Импульсно-кодовая модуляция (pcm — Pulse-Code Modulation)
- •3.7.3 Помехоустойчивость методов икм
- •3.7.4 Методы эффективного кодирования речи
- •3.7.5 Кодирование речи в стандарте cdma
- •3.7.6 Речевые кодеки для ip-телефонии
- •3.7.7 Оценка качества кодирования речи
- •3.8 Общие сведения по мр3
- •3.8.1 Феномен мрз
- •3.8.2 Что такое формат мрз?
- •3.8.3 Качество записи мрз
- •3.8.4 Формат мрз и музыкальные компакт-диски
- •3.8.5 Работа со звукозаписями формата мрз
- •3.9 Основные понятия цифровой звукозаписи
- •3.9.1 Натуральное цифровое представление данных
- •3.9.2 Кодирование рсм
- •3.9.3 Стандартный формат оцифровки звука
- •3.9.4 Параметры дискретизации
- •3.9.5 Качество компакт-диска
- •3.9.6 Объем звукозаписей
- •3.9.7 Формат wav
- •3.10 Формат mp3
- •3.10.1 Сжатие звуковых данных
- •3.10.2 Сжатие с потерей информации
- •3.10.3 Ориентация на человека
- •3.10.4 Кратко об истории и характеристиках стандартов mpeg.
- •3.10.5 Что такое cbr и vbr?
- •3.10.6 Каковы отличия режимов cbr, vbr и abr?
- •3.10.7 Методы оценки сложности сигнала
- •3.10.8 Какие методы кодирования стерео информации используются в алгоритмах mpeg (и других)?
- •3.10.9 Какие параметры предпочтительны при кодировании mp3?
- •3.10.10 Какие альтернативные mpeg-1 Layer III (mp3) алгоритмы компрессии существуют?
- •3.11 OggVorbis
- •3.13 Flac
- •4 Сжатие видео
- •4.1 Общие положения алгоритмов сжатия изображений
- •4.1.1 Классы изображений
- •4.1.2 Классы приложений
- •4.1.3 Требования приложений к алгоритмам компрессии
- •4.1.4 Критерии сравнения алгоритмов
- •4.2 Алгоритмы сжатия
- •Gif (CompuServe Graphics Interchange Format)
- •4.3 Вейвлет-преобразования
- •4.3.1 Вейвлеты, вейвлет-преобразования, виды и свойства Вейвлет анализ и прямое вейвлет-преобразование
- •Непрерывное прямое и обратное вейвлет-преобразования
- •Ортогональные вейвлеты
- •Дискретное вейвлет-преобразование непрерывных сигналов
- •Кратномасштабный анализ
- •Пакетные вейвлеты.
- •4.3.2 Примеры применения вейвлетов Очистка сигнала от шума
- •Очистка сигнала от шумов на основе вейвлет-преобразований.
- •4.4 Формат сжатия изображений jpeg
- •2) Дискретизация
- •3) Сдвиг Уровня
- •4) 8X8 Дискретное Косинусоидальное Преобразование (dct)
- •5) Зигзагообразная перестановка 64 dct коэффициентов
- •6) Квантование
- •7) RunLength кодирование нулей (rlc)
- •8) Конечный шаг - кодирование Хаффмана
- •4.5 Jpeg2000
- •4.5.1 Общая характеристика стандарта и основные принципы сжатия
- •4.5.2 Информационные потери в jpeg2000 на разных этапах обработки
- •4.5.3 Практическая реализация
- •4.5.4 Специализированные конверторы и просмотрщики
- •4.5.5 Основные задачи для развития и усовершенствования стандарта jpeg2000
- •4.6 Видеостандарт mpeg
- •4.6.1 Общее описание
- •4.6.2 Предварительная обработка
- •4.6.3 Преобразование макроблоков I-изображений
- •4.6.4 Преобразование макроблоков р-изображений
- •4.6.5 Преобразование макроблоков в-изображений
- •4.6.6 Разделы макроблоков
- •4.7 Mpeg-1
- •Параметры mpeg-1
- •4.8 Mpeg-2
- •4.8.1 Стандарт кодирования mpeg-2
- •4.8.2 Компрессия видеоданных
- •4.8.3 Кодируемые кадры
- •4.8.4 Компенсация движения
- •4.8.5 Дискретно-косинусное преобразование
- •4.8.6 Профессиональный профиль стандарта mpeg-2
- •4.9.11 Плюсы и минусы mpeg-4
- •4.10 Стандарт hdtv
1.10.1.2 Фильтры мнк 2-го порядка (мнк-2)
Рассчитываются и анализируются аналогично. Рассмотрим квадратный многочлен вида y(t)=A+B·t+C·t2. Для упрощения анализа ограничимся симметричным сглаживающим НЦФ с интервалом дискретизации данных t=1.
Минимум суммы квадратов остаточных ошибок:
(A,B,C) = [sn-(A+B·n+C·n2)]2. (10.1.4)
Система уравнений после дифференцирования выражения (10.1.4) по А, В, С и приравнивания полученных выражений нулю:
A 1 + B n + С n2 = sn.
A n + B n2 + С n3 = n·sn.
A n2 + B n3 + С n4 = n2·sn.
При вычислении значения квадратного многочлена только для центральной точки (t=0) необходимости в значениях коэффициентов В и С не имеется. Решая систему уравнений относительно А, получаем:
101.5
При развертывании выражения (10.1.5) для 5-ти точечного НЦФ:
yo = (17 sn - 5 n2sn) /35 = (-3·s-2+12·s-1+17·so+12·s1-3·s2) /35. (10.1.6)
Импульсная реакция: hn = {(-3, 12, 17, 12, -3)/35}.
Передаточная функция фильтра:
H(z)= (-3z-2+12z-1+17+12z1-3z2)/35. (10.1.7)
Рис. 10.1.8. Сглаживающие фильтры МНК.
Аналогичным образом выражение (10.1.5) позволяет получить импульсную реакцию для 7, 9, 11 и т.д. точек фильтра:
3hn = {(-2,3,6,7,6,3,-2)/21}.
4hn = {(-21,14,39,54,59,54,39,14,-21)/231}.
5hn={(-36,9,44,69,84,89,84,69,44,9,-21)/459}.
Подставляя значение z = exp(-j) в (10.1.7) или непосредственно в (10.1.6) сигнал sn = exp(jn) и объединяя комплексно сопряженные члены, получаем частотную характеристику 5-ти точечного сглаживающего фильтра МНК второго порядка:
H() = (17+24 cos(-6 cos(2))/35.
Вывод формул передаточных функций для 7, 9, 11-ти точечных фильтров МНК предлагается для самостоятельной работы.
Рис. 10.1.9. Рис. 10.1.10.
Вид частотных характеристик фильтров при N=3 и N=5 приводится на рис. 10.1.8. При сравнении характеристик с характеристиками фильтров МНК-1 можно видеть, что повышение степени полинома расширяет низкочастотную полосу пропускания фильтра и увеличивает крутизну ее среза. За счет расширения полосы пропускания главного частотного диапазона при тех же значениях N коэффициенты усиления дисперсии шумов фильтров МНК-2 выше, чем фильтров 1-го порядка, что можно видеть на рис. 10.1.9.
Методика выбора окна фильтра под частотные характеристики входных сигналов не отличается от фильтров МНК 1-го порядка. На рис. 10.1.10 приведены значения и фильтров МНК-2 в сопоставлении со значениями фильтров МНК-1 для частоты fв = 0.08 Гц при t=1. Из сопоставления видно, что для получения примерно равных значений подавления шумов фильтры МНК-2 должны иметь в 2 раза большую ширину окна, чем фильтры МНК-1. Об этом же свидетельствует и пример моделирования фильтрации, приведенный на рис. 10.1.11.
Рис. 10.1.11.
Модификация фильтров. Фильтры МНК второго порядка (равно как и другие фильтры подобного назначения) также можно модифицировать по условию H() → 0 при →. Один из простейших методов модификации заключается в следующем. В выражение передаточной функции (со всеми коэффициентами фильтра, вида (10.1.7)) подставляем z = exp(-j), заменяем значения концевых коэффициентов фильтра на параметры, принимаем = и, приравняв полученное выражение нулю, находим новые значения концевых коэффициентов, после чего сумму всех коэффициентов нормируем к 1 при = 0.
Пример модификации фильтра МНК 2-го порядка.
Передаточная функция: выражение (10.1.7). Частотная характеристика (нормировку можно снять):
H() = -3exp(2j)+12exp(j)+17+12exp(-j)-3exp(-2j).
Замена концевых коэффициентов {значение 3} на параметр b и упрощение:
H() = 17+24 cos()+2b cos(2).
При = : H() = 17-24+2b = 0. Отсюда: b = 3.5
Новая частотная характеристика (с приведением коэффициентов к целым числам):
H() = 68+96 cos()+14 cos(2).
Сумма коэффициентов при = 0: H(0) = 68+96+14 = 178.
Нормированная частотная характеристика: H() = (68+96 cos()+14 cos(2))/178.
Коэффициенты фильтра: hn = {(7,48,68,48,7)/178}.
Пример- задание: Модифицировать 7, 9 и 11-ти точечные сглаживающие фильтры МНК 2-го порядка.
Контроль: 7hn = {(1,6,12,14,12,6,1)/52}. 9hn = {(-1,28,78,108,118,108,78,28,-1)/548}.
11h n = {(-11,18,88,138,168,178,168,138,88,18,-11)/980}.
Сравнительные графики частотных характеристик модифицированных фильтров МНК второго порядка приведены на рисунке 10.1.8.
Фильтры МНК третьего порядка по своим частотным характеристикам эквивалентны фильтрам второго порядка.