
- •2.4.3 Ацп с плавающей точкой……………………………………………
- •1 Цифровые фильтры
- •1.1 Явление Гиббса
- •1.1.1 Сущность явления Гиббса
- •1.1.2 Параметры эффекта
- •1.1.3 Последствия для практики
- •1.2 Весовые функции
- •1.2.1 Нейтрализация явления Гиббса в частотной области
- •1.2.2 Основные весовые функции
- •1.3 Типы фильтров
- •1.4 Разностное уравнение
- •Нерекурсивные фильтры
- •1.5.1 Методика расчетов нцф
- •1.5.2 Идеальные частотные фильтры
- •1.5.3 Конечные приближения идеальных фильтров
- •1.5.3.1 Применение весовых функций
- •1.5.3.2 Весовая функция Кайзера
- •1.5.4 Дифференцирующие цифровые фильтры
- •1.5.5 Гладкие частотные фильтры
- •1.6 Рекурсивные фильтры
- •6.3 Интегрирующий рекурсивный фильтр.
- •1.6.1 Принципы рекурсивной фильтрации
- •1.6.2 Режекторные и селекторные фильтры
- •1.6.2.1 Комплексная z-плоскость.
- •1.6.2.2 Режекторные фильтры
- •1.6.2.3 Селекторный фильтр
- •1.6.3 Билинейное z-преобразование
- •1.6.4 Типы рекурсивных частотных фильтров
- •1.7 Импульсная характеристика фильтров
- •Передаточные функции фильтров
- •1.9 Частотные характеристики фильтров
- •1.10 Частотный анализ цифровых фильтров
- •1.10.1 Сглаживающие фильтры и фильтры аппроксимации
- •1.10.1.1 Фильтры мнк 1-го порядка (мнк-1)
- •1.10.1.2 Фильтры мнк 2-го порядка (мнк-2)
- •1.10.1.3 Фильтры мнк 4-го порядка
- •1.10.2 Разностные операторы
- •1.10.2.1 Разностный оператор
- •1.10.2.2 Восстановление данных
- •1.10.2.3 Аппроксимация производных
- •1.10.3 Интегрирование данных
- •1.10.4 Расчёт фильтров по частотной характеристике
- •1.11 Фильтрация случайных сигналов
- •1.12 Структурные схемы цифровых фильтров
- •Обращенные формы.
- •1.13 Фильтры Чебышева
- •1.14 Фильтры Баттерворта
- •Свойства фильтров Баттерворта нижних частот:
- •1.15 Фильтры Бесселя
- •2 Аналого-цифровое преобразование
- •2.1 Цифровая обработка звуковых сигналов
- •2.2 Основы аналого-цифрового преобразования
- •2.2.1 Основные понятия и определения
- •2.3 Структура и алгоритм работы цап
- •Контрольные вопросы
- •2.4 Структура и алгоритм работы ацп
- •2.4.1 Параллельные ацп
- •2.4.2 Ацп с поразрядным уравновешиванием
- •2.4.3 Ацп с плавающей точкой
- •Контрольные вопросы
- •Глава 3. Звук.
- •3.1 Аудиосигнал
- •3.1.1 Звуковые волны
- •3.1.2 Звук как электрический сигнал
- •3.1.3 Фаза
- •3.1.4 Сложение синусоидальных волн
- •3.2 Звуковая система
- •3.2.1 Назначение звуковой системы
- •3.2.2 Модель звуковой системы
- •3.2.3 Входные датчики
- •3.2.4 Выходные датчики
- •3.2.5 Простейшая звуковая система
- •3.3 Амплитудно-частотная характеристика
- •3.3.1 Способы записи ачх в спецификации звуковых устройств
- •3.3.2 Октавные соотношения и измерения
- •3.3.3 Ачх реальных устройств воспроизведения звука
- •3.3.4 Диапазон частот голоса и инструментов
- •3.3.5 Влияние акустических факторов
- •3.4 Единицы измерения, параметры звуковых сигналов
- •3.4.1 Децибел
- •3.4.2 Относительная мощность электрических сигналов дБm
- •3.4.3 Децибелы и уровень звука
- •3.4.5 Громкость, уровень сигнала и коэффициент усиления
- •3.4.6 Громкость
- •3.5 Динамический диапазон
- •3.5.1 Запас динамического диапазона
- •3.5.2 Выбор динамического диапазона для реальной звуковой системы
- •3.6 Цифровой звук
- •3.6.1 Частота дискретизации
- •3.6.2 Разрядность
- •3.6.3 Дизеринг
- •3.6.4 Нойс шейпинг
- •3.6.5 Джиттер
- •3.7 Методы и стандарты передачи речи по трактам связи, применяемые в современном оборудовании (7 кГц)
- •3.7.1 Импульсно-кодовая модуляция (pcm — Pulse-Code Modulation)
- •3.7.3 Помехоустойчивость методов икм
- •3.7.4 Методы эффективного кодирования речи
- •3.7.5 Кодирование речи в стандарте cdma
- •3.7.6 Речевые кодеки для ip-телефонии
- •3.7.7 Оценка качества кодирования речи
- •3.8 Общие сведения по мр3
- •3.8.1 Феномен мрз
- •3.8.2 Что такое формат мрз?
- •3.8.3 Качество записи мрз
- •3.8.4 Формат мрз и музыкальные компакт-диски
- •3.8.5 Работа со звукозаписями формата мрз
- •3.9 Основные понятия цифровой звукозаписи
- •3.9.1 Натуральное цифровое представление данных
- •3.9.2 Кодирование рсм
- •3.9.3 Стандартный формат оцифровки звука
- •3.9.4 Параметры дискретизации
- •3.9.5 Качество компакт-диска
- •3.9.6 Объем звукозаписей
- •3.9.7 Формат wav
- •3.10 Формат mp3
- •3.10.1 Сжатие звуковых данных
- •3.10.2 Сжатие с потерей информации
- •3.10.3 Ориентация на человека
- •3.10.4 Кратко об истории и характеристиках стандартов mpeg.
- •3.10.5 Что такое cbr и vbr?
- •3.10.6 Каковы отличия режимов cbr, vbr и abr?
- •3.10.7 Методы оценки сложности сигнала
- •3.10.8 Какие методы кодирования стерео информации используются в алгоритмах mpeg (и других)?
- •3.10.9 Какие параметры предпочтительны при кодировании mp3?
- •3.10.10 Какие альтернативные mpeg-1 Layer III (mp3) алгоритмы компрессии существуют?
- •3.11 OggVorbis
- •3.13 Flac
- •4 Сжатие видео
- •4.1 Общие положения алгоритмов сжатия изображений
- •4.1.1 Классы изображений
- •4.1.2 Классы приложений
- •4.1.3 Требования приложений к алгоритмам компрессии
- •4.1.4 Критерии сравнения алгоритмов
- •4.2 Алгоритмы сжатия
- •Gif (CompuServe Graphics Interchange Format)
- •4.3 Вейвлет-преобразования
- •4.3.1 Вейвлеты, вейвлет-преобразования, виды и свойства Вейвлет анализ и прямое вейвлет-преобразование
- •Непрерывное прямое и обратное вейвлет-преобразования
- •Ортогональные вейвлеты
- •Дискретное вейвлет-преобразование непрерывных сигналов
- •Кратномасштабный анализ
- •Пакетные вейвлеты.
- •4.3.2 Примеры применения вейвлетов Очистка сигнала от шума
- •Очистка сигнала от шумов на основе вейвлет-преобразований.
- •4.4 Формат сжатия изображений jpeg
- •2) Дискретизация
- •3) Сдвиг Уровня
- •4) 8X8 Дискретное Косинусоидальное Преобразование (dct)
- •5) Зигзагообразная перестановка 64 dct коэффициентов
- •6) Квантование
- •7) RunLength кодирование нулей (rlc)
- •8) Конечный шаг - кодирование Хаффмана
- •4.5 Jpeg2000
- •4.5.1 Общая характеристика стандарта и основные принципы сжатия
- •4.5.2 Информационные потери в jpeg2000 на разных этапах обработки
- •4.5.3 Практическая реализация
- •4.5.4 Специализированные конверторы и просмотрщики
- •4.5.5 Основные задачи для развития и усовершенствования стандарта jpeg2000
- •4.6 Видеостандарт mpeg
- •4.6.1 Общее описание
- •4.6.2 Предварительная обработка
- •4.6.3 Преобразование макроблоков I-изображений
- •4.6.4 Преобразование макроблоков р-изображений
- •4.6.5 Преобразование макроблоков в-изображений
- •4.6.6 Разделы макроблоков
- •4.7 Mpeg-1
- •Параметры mpeg-1
- •4.8 Mpeg-2
- •4.8.1 Стандарт кодирования mpeg-2
- •4.8.2 Компрессия видеоданных
- •4.8.3 Кодируемые кадры
- •4.8.4 Компенсация движения
- •4.8.5 Дискретно-косинусное преобразование
- •4.8.6 Профессиональный профиль стандарта mpeg-2
- •4.9.11 Плюсы и минусы mpeg-4
- •4.10 Стандарт hdtv
1.6.2.3 Селекторный фильтр
Если в уравнении (5.2.4) опустить нули, то получим селекторный фильтр, выделяющий сигналы одной частоты ωs – частоты селекции, с передаточной функцией:
Hs(z) = G/[(z-zp)(z-zp*)], (6.2.11)
Hs(z)
=
,
(6.2.11')
Характер передаточной функции (6.2.11) можно представить непосредственно по z-плоскости (рис. 6.2.1). При расположении полюсов фильтра за пределами единичного круга (например, в точках р2 и р2*) значение коэффициента передачи фильтра на произвольной частоте ω на единичной окружности будет обратно пропорционально величине векторов из этих точек окружности на полюса фильтра. При изменении ω от нуля до ±π (движение по единичной окружности на z-плоскости по или против часовой стрелки) один из векторов (на полюс противоположной полуплоскости) изменяется в достаточно небольших пределах (не превышая значения 2), в то время как второй из векторов (на полюс в своей полуплоскости) будут сначала уменьшаться, достигает минимума при расположении ω на полярном радиусе полюса (на частоте селекции ωs), а затем снова начинает увеличиваться. Соответственно, значение Hs(ω) максимально на частоте селекции ±ωs и при R → 1 может быть очень высоким. Пример передаточной функции (при G1=1) приведен на рис. 6.2.7.
Рис.
6.2.7.
G1 = 1+a1 z(s)+a2 z(s)2.
Фильтр (6.2.11) в принципе не может иметь нулевого коэффициента передачи на других частотах главного диапазона. Если последнее является обязательным, то фильтр выполняется методом обращения режекторного фильтра Hv(z):
Hs(z) = 1-Hv(z).
Hs(z)
=
.
(6.2.12)
с0 = 1-G, c1 = a1-Gb1, c2 = a2-G.
Рис. 6.2.8.
Пример передаточной функции фильтра приведен на рис. 6.2.8. Пример применения фильтра для выделения гармонического сигнала на уровне шумов, мощность которых в три раза больше мощности сигнала, приведен на рис. 6.2.9.
Рис. 6.2.9. Фильтрация сигнала селекторным РЦФ.
1.6.3 Билинейное z-преобразование
Принцип преобразования. При стандартном z-преобразовании передаточной функции используется замена переменной вида:
z = exp(-pt), (6.3.1)
где t - шаг дискретизации данных, p – комплексная переменная, р = +j.
Уравнение (6.3.1) можно записать в виде ln z = -pt и разложить ln z в ряд:
ln z = -2[(1-z)/(1+z)+(1-z)3/(3(1-z)3)+ ....], z > 0.
Первый член этого разложения и представляет собой билинейное z- преобразование:
p = (2/t)(1-z)/(1+z). (6.3.2)
По сути, оно представляет собой отображение точек комплексной p-плоскости в точки комплексной z-плоскости, и наоборот. В общем виде:
p = (1-z)/(1+z), (6.3.3)
z = (-p)/(+p). (6.3.4)
Значение множителя γ не меняет формы преобразования, в связи с чем обычно принимают = 1. Подставим p = j в (6.3.4) и выразим z в показательной форме:
z = r exp(j()), r = |z| = 1.
() = 2 arctg(/),
Рис.
6.3.1.
= 0, z = exp(j0) = 1,
= , z = exp( j) = -1
Деформация частотной шкалы. Реальное отображение передаточных функций фильтров является непрерывным (в силу своей физической сущности) и для упрощения дальнейших расчетов обычно задается в аналитической форме в комплексной р-плоскости по частотному аргументу ω от - до +. При билинейном z-преобразовании происходит нелинейное искажение шкалы частот: полный частотный диапазон от - до непрерывных функций в р-плоскости сжимается до главного частотного диапазона от -/t до /t дискретных функций в z-плоскости. При задании уравнений непрерывных передаточных функций в частотной области это должно сопровождаться соответствующей обратной деформацией частотной шкалы, которая будет скомпенсирована при билинейном z-преобразовании. Подставляя в (6.3.2) z = exp(-jt) и умножая числитель и знаменатель правой части полученного уравнения на exp(jt/2), получим:
p = (2/t)[exp(jt/2)-exp(-jt/2)] / [exp(jt/2)+exp(-jt/2)],
p = (2/t) th(jt/2). (6.3.5)
Обозначим шкалу частот в р-области через индекс д (деформированная) и, полагая p = jд , с учетом тождества th(x) = - jtg(jx), получаем:
д = (2/t) tg(t/2) = tg(t/2), -/t<</t. (6.3.6)
Выражение (6.3.6) позволяет осуществлять переход от фактических частот главного частотного диапазона, которым должен соответствовать оператор РЦФ, к деформированным частотам д комплексной p-плоскости, на которой можно задавать требуемую форму передаточной функции проектируемого фильтра, при этом аппроксимация передаточных функций, учитывая область существования от - до может производиться многочленами и рациональными функциями. Связь частот приведена на рис. 6.3.2 (в начальной части пространства деформированных частот).
Рис. 6.3.2. Деформация частоты.