Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Программирование на языке Ruby.docx
Скачиваний:
19
Добавлен:
06.09.2019
Размер:
1.74 Mб
Скачать

5.26. Дисперсия и стандартное отклонение

Дисперсия — это мера «разброса» значений из набора. (Здесь мы не различаем смещенные и несмещенные оценки.) Стандартное отклонение, которое обычно обозначается буквой σ, равно квадратному корню из дисперсии.

Data = [2, 3, 2, 2, 3, 4, 5, 5, 4, 3, 4, 1, 2]

def variance(x)

 m = mean(x)

 sum = 0.0

 x.each {|v| sum += (v-m)**2 }

 sum/x.size

end

def sigma(x)

 Math.sqrt(variance(x))

end

puts variance(data) # 1.461538462

puts sigma(data)    # 1.20894105

Отметим, что функция variance вызывает определенную выше функцию mean.

5.27. Вычисление коэффициента корреляции

Коэффициент корреляции — одна из самых простых и полезных статистических мер. Он измеряет «линейность» набора, состоящего из пар (x, у), и изменяется от -1.0 (полная отрицательная корреляция) до +1.0 (полная положительная корреляция).

Для вычисления воспользуемся функциями mean и sigma (стандартное отклонение), которые были определены в разделах 5.25 и 5.26. О смысле этого показателя можно прочитать в любом учебнике по математической статистике.

В следующем коде предполагается, что есть два массива чисел одинакового размера:

def correlate(x,y)

 sum = 0.0

 x.each_index do |i|

  sum += x[i]*y[i]

 end

 xymean = sum/x.size.to_f

 xmean = mean(x)

 ymean = mean(y)

 sx = sigma(x)

 sy = sigma(y)

 (xymean-(xmean*ymean))/(sx*sy)

end

a = [3, 6, 9, 12, 15, 18, 21]

b = [1.1, 2.1, 3.4, 4.8, 5.6]

с = [1.9, 1.0, 3.9, 3.1, 6.9]

c1 = correlate(a,a)         # 1.0

c2 = correlate(a,a.reverse) # -1.0

c3 = correlate(b,c)         # 0.8221970228

Приведенная ниже версия отличается лишь тем, что работает с одним массивом, каждый элемент которого — массив, содержащий пару (x, у):

def correlate2(v)

 sum = 0.0

 v.each do |a|

  sum += a[0]*a[1]

 end

 xymean = sum/v.size.to_f

 x = v.collect {|a| a[0]}

 y = v.collect {|a| a[1]}

 xmean = mean(x)

 ymean = mean(y)

 sx = sigma(x)

 sy = sigma(y)

 (xymean-(xmean*ymean))/(sx*sy)

end

d = [[1,6.1], [2.1,3.1], [3.9,5.0], [4.8,6.2]]

c4 = correlate2(d) # 0.2277822492

И, наконец, в последнем варианте предполагается, что пары (x, у) хранятся в хэше. Код основан на предыдущем примере:

def correlate_h(h)

 correlate2(h.to_a)

end

e = { 1 => 6.1, 2.1 => 3.1, 3.9 => 5.0, 4.8 => 6.2}

c5 = correlated(e) # 0.2277822492

5.28. Генерирование случайных чисел

Если вас устраивают псевдослучайные числа, вам повезло. Именно они предоставляются в большинстве языков, включая и Ruby.

Метод rand из модуля Kernel возвращает псевдослучайное число x с плавающей точкой, отвечающее условиям x >= 0.0 и x < 1.0. Например (вы можете получить совсем другое число):

a = rand # 0.6279091137

Если при вызове задается целочисленный параметр max, то возвращается целое число из диапазона 0...max (верхняя граница не включена). Например:

n = rand(10) # 7

Чтобы «затравить» генератор случайных чисел (задать начальное значение — seed), применяется метод srand из модуля Kernel, который принимает один числовой параметр. Если не передавать никакого значения, то метод srand самостоятельно изготовит затравку, учитывая (среди прочего) текущее время. Если же параметр передан, то именно он и становится затравкой. Это бывает полезно при тестировании, когда для воспроизводимости результатов многократно вызываемая программа должна получать одну и ту же последовательность псевдослучайных чисел.

srand(5)

i, j, k = rand(100), rand(100), rand(100)

# 26, 45, 56

srand(5)

l, m, n = rand(100), rand(100), rand(100)

# 26, 45, 56