Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Программирование на языке Ruby.docx
Скачиваний:
18
Добавлен:
06.09.2019
Размер:
1.74 Mб
Скачать

9.2.4. Более строгая реализация очереди

Мы определим очередь примерно так же, как стек. Если вы хотите защититься от некорректного доступа к структуре данных, рекомендуем поступать аналогично.

class Queue

 def initialize

  @store = []

 end

 def enqueue(x)

  @store << x

 end

 def dequeue

  @store,shift

 end

 def peek

  @store.first

 end

 def length

  @store.length

 end

 def empty?

  @store.empty?

 end

end

Отметим, что класс Queue имеется в библиотеке thread для поддержки многопоточных программ. Имеется даже вариант SizedQueue для организации очереди ограниченного размера.

В упомянутых классах методы имеют короткие имена: enq и deq. У них есть также синонимы push и pop, что лично мне кажется неоправданным. Это структура данных FIFO, а не LIFO, то есть именно очередь, а не стек.

Разумеется, класс Queue в библиотеке thread.rb безопасен относительно потоков. Если вы хотите реализовать такой же класс Stack, рекомендую взять Queue в качестве отправной точки. Потребуется внести не так много изменений.

В первом издании книги был длинный пример, демонстрирующий работу с очередями. Но, как и некоторые примеры, касающиеся стеков, он был исключен ради экономии места.

9.3. Деревья

Я не увижу никогда, наверное,

Поэму столь прекрасную как дерево.

Джойс Килмер, «Деревья»[11]

В информатике идея дерева считается интуитивно очевидной (правда, изображаются они обычно с корнем наверху, а листьями снизу). И немудрено, ведь в повседневной жизни мы постоянно сталкиваемся с иерархическими данными: генеалогическое древо, организационная схема компании, структура каталогов на диске.

Терминология, описывающая деревья, богата, но понять ее легко. Элементы дерева называются узлами; верхний или самый первый узел называется корневым или корнем. У узла могут бытьпотомки, расположенные ниже него, а непосредственные потомки называются детьми или дочерними узлами. Узел, не имеющий потомков, называется листовым или просто листом. Поддерево состоит из некоторого узла и всех его потомков. Посещение всех узлов дерева (например, с целью распечатки) называется обходом дерева.

Нас будут интересовать в основном двоичные деревья, хотя в принципе узел может иметь произвольное число детей. Мы покажем, как создавать дерево, добавлять в него узлы и выполнять обход. Рассмотрим также некоторые реальные задачи, при решении которых используются деревья.

Отметим, что во многих языках, например в С или Pascal, деревья реализуются с помощью адресных указателей. Но в Ruby (как и в Java) указателей нет, вместо них используются ссылки на объекты, что ничуть не хуже, а иногда даже лучше.

9.3.1. Реализация двоичного дерева

Ruby позволяет реализовать двоичное дерево разными способами. Например, хранить значения узлов можно в массиве. Но мы применим более традиционный подход, характерный для кодирования на С, только указатели заменим ссылками на объекты.

Что нужно для описания двоичного дерева? Понятно, что в каждом узле должен быть атрибут для хранения данных. Кроме того, в каждом узле должны быть атрибуты для ссылки на левое и правое поддерево. Еще необходим способ вставить новый узел в дерево и получить хранящуюся в дереве информацию. Для этого нам потребуется два метода.

В первом дереве, которое мы рассмотрим, эти методы будут реализованы неортодоксальным способом. Позже мы расширим класс Tree.

В некотором смысле дерево определяется алгоритмом вставки и способом обхода. В нашем первом примере (листинг 9.1) метод insert будет осуществлять поиск в дереве «в ширину», то есть сверху вниз и слева направо. При этом глубина дерева растет относительно медленно, и оно всегда оказывается сбалансированием. Методу вставки соответствует итератор traverse, который обходит дерево в том же порядке.