- •Круговорот водяного пара
- •Физические свойства льда, воды, вп. Определение и связь между характеристиками влажности воздуха.
- •Фазовые переходы воды. Условия фазового равновесия. График равновесия фаз. Переохлажденное состояние воды.
- •Упругость насыщенного пара в зависимости от температуры ( уравнение Клаузиуса-Клайперона). Факторы, влияющие на упругость насыщения.
- •Процесс испарения с молекулярно - кинетической точки зрения. Уравнение Кнудсена. Эмпирические формулы для расчета испарения. Ф-ла Дальтона.
- •Испарение и испаряемость. Испарение
- •Испаряемость
- •Процесс диффузии водяного пара, адвекция водяного пара. Уравнение переноса водяного пара.
- •Особенности испарения в естественных условиях. Распределение водяного пара по вертикали в приземном слое атмосферы. Влагосодержание атмосферы.
- •Суточный, годовой ход параметров влажности воздуха, многолетняя изменчивость
- •Географическое распределение испаряемости и влажности воздуха.
- •Конденсация и сублимация водяного пара. Ядра конденсации. Продукты конденсации.
- •Процессы, приводящие к образованию туманов. Классификация туманов.
- •Физические процессы образования облаков. Классификация облаков.
- •Конденсация. Общие свойства коагуляции.
- •Активное воздействие на облака. Характеристика и классификация осадков, выпадающих из облаков. Наземные осадки. Определение количества осадков.
- •Снежный покров.
- •Аномалии баланса влаги – засухи. Условия возникновения засух и их последствия (на примере Европейской территории России летом 2011 г).
Суточный, годовой ход параметров влажности воздуха, многолетняя изменчивость
В приземном слое атмосферы наблюдается хорошо выраженный суточный и годовой ход влагосодержания, связанный с соответствующими периодическими изменениями температуры.
Суточный ход упругости водяного пара и абсолютной влажности над океанами, морями и в прибрежных районах суши аналогичен суточному ходу температуры воды и воздуха: минимум перед восходом Солнца и максимум в 14...15 ч. Минимум обусловлен очень слабым испарением (или его отсутствием вообще) в это время суток. Днем по мере увеличения температуры и соответственно испарения влагосодержание в воздухе растет. Таков же суточный ход упругости водяного пара и над материками зимой.
В теплое время года в глубине материков суточный ход влаго-содержания имеет вид двойной волны (рис. 5.1). Первый минимум наступает рано утром вместе с минимумом температуры. После восхода Солнца температура деятельной поверхности повышается, увеличивается скорость испарения, и количество водяного пара в нижнем слое атмосферы быстро растет. Такой рост продолжается до 8...10 ч, пока испарение преобладает над переносом пара снизу в более высокие слои. После 8...10ч возрастает интенсивность турбулентного перемешивания, в связи с чем водяной пар быстро переносится вверх. Этот отток водяного пара уже не успевает компенсироваться испарением, в результате чего влагосодержание и, следовательно, упругость водяного пара в приземном слое уменьшаются и достигают второго минимума в 15...16 ч. В предвечерние часы турбулентность ослабевает, тогда как довольно интенсивное поступление водяного пара в атмосферу путем испарения еще продолжается. Упругость пара и абсолютная влажность в воздухе начинают увеличиваться и в 20...22ч достигают второго максимума. В ночные часы испарение почти прекращается, в результате чего содержание водяного пара уменьшается.
Годовой ход упругости водяного пара и абсолютной влажности совпадают с годовым ходом температуры воздуха как над океаном, так и над сушей. В Северном полушарии максимум влаго-содержания воздуха наблюдается в июле, минимум - в январе. Например, в Санкт-Петербурге средняя месячная упругость пара в июле составляет 14,3 гПа, а в январе — 3,3 гПа.
Суточный ход относительной влажности зависит от упругости пара и упругости насыщения. С повышением температуры испаряющей поверхности увеличивается скорость испарения и, следовательно, увеличивается е. Но Е растет значительно быстрее, чем е, поэтому с повышением температуры поверхности, а с ней и температуры воздуха относительная влажность уменьшается [см. формулу (5.1)]. В итоге ход ее вблизи земной поверхности оказывается обратным ходу температуры поверхности и воздуха: максимум относительной влажности наступает перед восходом Солнца, а минимум — в 15... 16 ч (рис. 5.2). Дневное ее понижение особенно резко выражено над континентами в летнее время, когда в результате турбулентной диффузии пара вверх е у поверхности уменьшается, а вследствие роста температуры воздуха Е увеличивается. Поэтому амплитуда суточных колебаний относительной влажности на материках значительно больше, чем над водными поверхностями.
В годовом ходе относительная влажность воздуха, как правило, также меняется обратно ходу температуры. Например, в Санкт-Петербурге относительная влажность в мае в среднем составляет 65 %, а в декабре — 88 % (рис. 5.3). В районах с муссонным климатом минимум относительной влажности приходится на зиму, а максимум — на лето вследствие летнего переноса на сушу масс влажного морского воздуха: например, во Владивостоке летом /= 89%, зимой/= 68 %.
Ход дефицита насыщения водяного пара параллелен ходу температуры воздуха. В течение суток дефицит бывает наибольшим в 14...15 ч, а наименьшим — перед восходом Солнца. В течение года дефицит насыщения водяного пара имеет максимум в самый жаркий месяц и минимум в самый холодный. В засушливых степных районах России летом в 13 ч ежегодно отмечается дефицит насыщения, превышающий 40 гПа. В Санкт-Петербурге дефицит насыщения водяного пара в июне в среднем составляет 6,7 гПа, а в январе — только 0,5 гПа
