Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Элейская школа философии.docx
Скачиваний:
4
Добавлен:
03.09.2019
Размер:
73.13 Кб
Скачать

Адекватность аналитической теории движения

Общая теория движения с переменной скоростью была разработана в конце XVII века Ньютоном и Лейбницем. Математической основой теории служит математический анализ, первоначально опиравшийся на понятие бесконечно малой величины. В дискуссии о том, что собой представляет бесконечно малая, вновь возродились два античных подхода.

Первый подход, которого придерживался Лейбниц, доминировал весь XVIII век. Аналогично античному атомизму, он рассматривает бесконечно малые как особый вид чисел (больше нуля, но меньше любого обычного положительного числа). Строгое обоснование этого подхода (так называемый нестандартный анализ) разработал Абрахам Робинсон в XX веке. Основой анализа по Робинсону служит расширенная числовая система (гипервещественные числа). Конечно, робинсоновские бесконечно малые мало похожи на античные атомы хотя бы потому, что они неограниченно делимы, но они позволяют корректно рассматривать непрерывную кривую во времени и пространстве как состоящую из бесконечного количества бесконечно малых участков.

Второй подход предложил Коши в начале XIX века. Его анализ построен на обычных вещественных числах, а для анализа непрерывных зависимостей используется теория пределов. Сходного мнения на обоснование анализа придерживались Ньютон,Даламбер и Лагранж, хотя были в этом мнении не всегда последовательны.

Оба подхода практически эквивалентны, но с точки зрения физика удобнее первый; в учебниках физики часто встречаются фразы вроде «пусть dV — бесконечно малый объём…». С другой стороны, вопрос о том, какой из подходов ближе к физической реальности, не решён. При первом подходе неясно, чему соответствуют в природе бесконечно малые числа. При втором адекватности физической и математической модели мешает тот факт, что операция перехода к пределу — инструментальный исследовательский приём, не имеющий никакого природного аналога. В частности, трудно говорить о физической адекватности бесконечных рядов, элементы которых относятся к произвольно малым интервалам пространства и времени (хотя как приближённая модель реальности такие модели часто и успешно используются). Наконец, не доказано, что время и пространство устроены сколько-нибудь похоже на математические структуры вещественных или гипервещественных чисел.

Дополнительную сложность внесла в вопрос квантовая механика, показавшая, что в микромире резко повышена роль дискретности. Таким образом, дискуссии о структуре пространства, времени и движения, начатые Зеноном, активно продолжаются и далеки от завершения.

Другие апории Зенона

Вышеприведенные (наиболее известные) апории Зенона касались применения понятия бесконечности к движению, пространству и времени. В других апориях Зенон демонстрирует иные, более общие аспекты бесконечности. Однако, в отличие от трёх знаменитых апорий о физическом движении, другие апории изложены менее ясно и касаются в основном чисто математических или общефилософских аспектов. С появлением математической теории бесконечных множеств интерес к ним существенно упал.

Стадион

Апория «Ристалище» (или «Стадион») вкратце формулируется так.

Два тела движутся навстречу друг другу. В этом случае одно из них затратит на прохождение мимо другого столько же времени, сколько оно затратило бы на прохождение мимо покоящегося. Значит, половина равна целому.

Эта апория аналогична парадоксу Галилея: бесконечное множество может быть равномощно своей части.

Множественность

Часть апорий посвящена обсуждению вопроса о единстве и множественности мира.

Если их [существующих вещей] много, то их должно быть столь много, сколько их есть, — не больше и не меньше. А если их столь много, сколько их есть, то их [число] ограничено. [Но] если существующих [вещей] много, то их [число] неограничено: ибо всегда существуют другие вещи между существующими [вещами], и снова другие между ними. И так [число] существующих [вещей] неограничено.

Сходные вопросы обсуждаются в диалоге Платона «Парменид, где Зенон и Парменид обстоятельно разъясняют свою позицию. На современном языке данное рассуждение Зенона означает, что множественное бытие не может быть актуально бесконечно и поэтому должно быть конечно, но к существующим вещам всегда можно добавить новые, что противоречит конечности. Вывод: бытие не может быть множественным.

Комментаторы обращают внимание на то, что данная апория по своей схеме чрезвычайно напоминает открытые на рубеже XIXXX веков антиномии теории множеств[15] [41], особенно парадокс Кантора: с одной стороны, мощность множества всех множеств больше, чем мощность любого другого множества, но с другой стороны, для любого множества нетрудно указать множество большей мощности (теорема Кантора). Это противоречие, вполне в духе апории Зенона, разрешается однозначно: абстракция множества всех множеств признаётся недопустимой и несуществующей как научное понятие.

Мера

Симпликий описывает эту апорию следующим образом.

Доказав, что, «если вещь не имеет величины, она не существует», Зенон прибавляет: «Если вещь существует, необходимо, чтобы она имела некоторую величину, некоторую толщину и чтобы было некоторое расстояние между тем, что представляет в ней взаимное различие». То же можно сказать о предыдущей, о той части этой вещи, которая предшествует по малости в дихотомическом делении. Итак, это предыдущее должно также иметь некоторую величину и свое предыдущее. Сказанное один раз можно всегда повторять. Таким образом, никогда не будет крайнего предела, где не было бы различных друг от друга частей. Итак, если есть множественность, нужно, чтобы вещи были в одно и то же время велики и малы и настолько малы, чтобы не иметь величины, и настолько велики, чтобы быть бесконечными… У чего нет совершенно ни величины, ни толщины, ни объёма, того и вовсе нет.

Другими словами, если деление вещи пополам сохраняет её качество, то в пределе получаем, что вещь одновременно и бесконечно велика (поскольку неограниченно делима), и бесконечно мала. Кроме того, непонятно, как существующая вещь может иметь бесконечно малые измерения.

Более подробно эти же аргументы присутствуют в комментариях Филопона. Также аналогичные рассуждения Зенона цитирует и критикует Аристотель в своей «Метафизике»:

Если само-по-себе-единое неделимо, то, согласно положению Зенона, оно должно быть ничем. В самом деле, если прибавление чего-то к вещи не делает ее больше и отнятие его от неё не делает её меньше, то, утверждает Зенон, это нечто не относится к существующему, явно полагая, что существующее — это величина, а раз величина, то и нечто телесное: ведь телесное есть в полной мере сущее; однако другие величины, например плоскость и линия, если их прибавлять, в одном случае увеличивают, а в другом нет; точка же и единица не делают этого никаким образом. А так как Зенон рассуждает грубо и так как нечто неделимое может существовать, и притом так, что оно будет некоторым образом ограждено от Зеноновых рассуждений (ибо если такое неделимое прибавлять, оно, правда, не увеличит, но умножит), то спрашивается, как из одного такого единого или нескольких получится величина? Предполагать это — всё равно что утверждать, что линия состоит из точек.