
- •1. Тиск газів. Закон Паскаля. Атмосферний тиск
- •2. Послідовне та паралельне з’єднання провідників в електричному колі.
- •3. Рівноприскорений рух. Вільне падіння .
- •4. Взаємодія струмів. Магнітне поле струму. Магнітна індукція. Сила Ампера. Сила Лоренца.
- •5. Механічний рух. Відносність руху. Система відліку. Шлях і переміщення. Додавання швидкостей.
- •6. Випаровування рідин. Насичуюча і ненасичуюча пара. Тиск насичуючої пари. Вологість повітря, її вимірювання
- •7. Рівномірний рух тіла по колу
- •8. Електромагнітні хвилі, їх випромінювання. Принципи сучасного радіозв’язку. Розвиток засобів зв’язку в Україні.
- •9. Гравітаційна взаємодія. Закон всесвітнього тяжіння. Деформація тіл. Закон Гука. Сила тертя.
- •10. Корпускулярно-хвильовий дуалізм. Тиск світла. Дослід Лебедєва. Хімічна дія світла.
- •11. Перший закон динаміки Ньютона. Інерціальні системи відліку. Принцип відносності у класичній механіці.
- •12. Закони відбивання та заломлення світла.
- •13. Маса, її вимірювання. Сила. Другий закон динаміки Ньютона.
- •14. Радіоактивність. Закон радіоактивного розпаду. Альфа-, бета-, гамма-випромінювання.
- •15. Третій закон Ньютона. Імпульс тіла. Закон збереження імпульсу. Значення робіт к. Ціолковського, ю. Кондратюка, с.Корольова у розвитку космонавтики.
- •16. Самоіндукція. Індуктивність. Енергія магнітного поля.
- •17. Рух тіла під дією кількох сил. Момент сили. .
- •18.Неперервний та лінійчатий спектри. Спектри поглинання та випромінювання. Спектральний аналіз та його застосування.
- •19. Фотоелементи та їх застосування в техніці.
- •20. Дифракція світла. Дифракційна решітка та її застосування
- •21. Склад атомного ядра. Відкриття нейтрона. Ізотопи
- •22. Генератор змінного струму. Трансформатор. Передавання енергії на відстань.
- •23. Основні положення молекулярно-кінетичної теорії. Пояснення агрегатних станів речовини на основі мкт. Маса і розмір молекул. Стала Авогадро.
- •Будь-які речовини мають дискретну (переривчасту) будову. Вони складаються з найдрібніших частинок молекул і атомів.
- •Молекули знаходяться в стані неперервного хаотичного (невпорядкованого) руху, що називається тепловим.
- •24. Лінзи. Формула тонкої Лінзи. Лінійне збільшення
- •25. Внутрішня енергія, способи її зміни. Кількість теплоти та робота. Перший закон термодинаміки
- •26. Вільні електромагнітні коливання у контурі. Перетворення енергії в коливальному контурі. Власна частота коливань у контурі
- •27. Температура, її фізичний зміст. Вимірювання температури. Температурні шкали.
- •28. Поділ ядер урану. Ланцюгова реакція. Ядерний реактор. Термоядерні реакції
- •29. Несамостійний і самостійний розряди у газах. Плазма, її використання.
- •30. Дослід Резерфорда. Ядерна модель атома. Квантові постулати Бора.
- •31. Електризація тіл. Електричний заряд, його дискретність. Закон збереження електричного заряду. Закон Кулона.
- •32. З'єднання конденсаторів у батарею.
- •33. . Електричне поле. Напруженість електричного поля. Лінії напруженості
- •34 Фотоелектричний ефект. Закони фотоефекту, їх пояснення на основі квантових уявлень. Рівняння Ейнштейна.
- •35. Робота при переміщенні заряджених тіл в електричному полі. Потенціал. Різниця потенціалів. Напруга.
- •36. Експериментальні методи реєстрації іонізуючих випромінювань. Поглинена доза випромінювання, її біологічна дія. Способи захисту від випромінювання
- •37. Електроємність. Конденсатор. Енергія електричного поля конденсатора (без виведення). Застосування конденсаторів у техніці.
- •38. Деформації. Види деформацій. Сила пружності. Закон Гука
- •39. Електричний струм. Закон Ома для ділянки кола. Опір.
- •40. Кристалічні та аморфні тіла. Поняття про рідкі кристали
- •41. Електрорушійна сила. Закон Ома для повного кола. Робота і потужність електричного струму.
- •42. Природа світла
- •43. Явище електромагнітної індукції. Закон електромагнітної індукції. Правило Ленца.
- •44. Побудова зображення за допомогою лінзи.
- •45. Електромагнітне поле, його матеріальність. Електромагнітні хвилі, їх властивості. Радіолокація, її застосування.
- •Блок-схема радіолокаційної станції.
- •46 Поверхневий натяг. Капілярні явища. Явища змочування і капілярності у природі і техніці.
- •47. Електричний струм у вакуумі. Електронна емісія. Електронно-променева трубка.
- •48. Ідеальний газ. Рівняння стану ідеального газу.
- •49. Електричний струм в електролітах. Закони електролізу. Застосування електролізу.
- •50. Шкала електромагнітних хвиль. Застосування інфрачервоного, ультрафіолетового та рентгенівського випромінювань.
- •51. Електричний струм у напівпровідниках. Залежність опору напівпровідників від температури та освітленості. Застосування напівпровідників.
- •52. Когерентність. Інтерференція, її застосування в техніці. Дисперсія світла.
22. Генератор змінного струму. Трансформатор. Передавання енергії на відстань.
Генератор змінного струму — система з нерухомого статора (складається із сталевого осердя та обмотки) і ротора (електромагніт із сталевим осердям), який обертається всередині нього.
Через два контактних кільця, до яких притиснуті ковзні контакти щітки, проводиться електричний струм. Електромагніт створює магнітне поле, яке обертається з кутовою швидкістю обертання ротора та збуджує в обмотці статора ЕРС індукції.
Щоб ротор обертався і створював магнітне поле, яке викликає у статорі ЕРС індукції, йому необхідно надавати енергію. Ротор обертається у електростанціях за допомогою пари (ТЕС та АЕС) або гідротурбін (ГЕС).
Трансформа́тор —електромагнітний пристрій, що використовується для зміни напруги й сили змінного струму.
Найпростіший трансформатор складається з обмоток на спільному осерді. Одна з обомоток під'єднана до джерела змінного струму. Ця обмотка називається первинною. Інша обмотка, вторинна, служить джерелом струму для навантаження. Створений струмом у первинній обмотці змінний магнітний потік викликає появу е.р.с. у вторинній обмотці, оскільки обидві обмотки мають спільне осердя. Співвідношення е.р.с. у вторинній обмотці й напруги на первинній залежить від кількості витків у обох обмотках. В ідеальному випадку,
де індексом P позначені величини, що стосуються первинної обмотки, а індексом S — відповідні величини для вторинної обмотки, U — напруга, N — кількість витків, I — сила струму.
Таким чином, перетворення напруги й сили струму в трансформаторів визначається кількістю витків у первинній та вторинній обмотках. Напруга пропорційна кількості витків, тоді як сила струму обернено пропорційна їй.
Споживачі електроенергії існують всюди. Виробляється ж вона в порівняно деяких місцях, близьких до джерел паливних і гідроресурсів. Тому виникає необхідність передачі електроенергії на відстані, що досягають іноді сотень кілометрів.
Але передача електроенергії на великі відстані зв'язана з помітними втратами. Справа в тому, що, проходячи по лініях електропередачі, струм нагріває їх. Відповідно до закону Джоуля — Ленца, енергія, що витрачається на нагрівання проводів лінії, визначається формулою
Q=I2Rt
де R — опір лінії.
При великій довжині лінії передача енергії може стати взагалі економічно невигідною.
Для зменшення втрат можна, звичайно, йти по шляху зменшення опору R лінії за допомогою збільшення площі поперечного перерізу проводів. Але для зменшення R, приміром, у 100 разів потрібно збільшити масу проводу також у 100 разів. Зрозуміло, що не можна допустити такої великої витрати дорогого кольорового металу, не говорячи вже про труднощів закріплення важких проводів на високих щоглах і т.п.
Тому втрати енергії в лінії знижують іншим шляхом: зменшенням струму в лінії. Наприклад, зменшення струму в 10 разів зменшує кількість тепла, що виділився в провідниках, у 100 разів, тобто досягається той же ефект, що і від сторазового обваження проводу. Тому що потужність струму пропорційна добутку сили струму на напругу, то для збереження переданої потужності потрібно підвищити напруга в лінії передачі. Причому, чим довша лінія передачі, тим вигідніше використовувати більш високу напругу. Так, наприклад, у високовольтній лінії передачі Волзька ГЕС — Москва використовують напругу в 500 кв. Тим часом генератори перемінного струму будують на напруги, що не перевищують 16—20 кв., тому що більш висока напруга зажадала би прийняття більш складних спеціальних мір для ізоляції обмоток і інших частин генераторів.
Тому на великих електростанціях ставлять підвищувальні трансформатори. Трансформатор збільшує напругу в лінії в стільки ж раз, у скільки зменшує силу струму. Втрати потужності при цьому невеликі.
Для безпосереднього використання електроенергії в двигунах електропривода верстатів, в освітлювальній мережі і для інших цілей напруга на кінцях лінії потрібно понизити. Це досягається за допомогою понижуючих трансформаторів. Причому звичайне зниження напруги і відповідно збільшення сили струму відбувається в кілька етапів. На кожнім етапі напруга стає усе менше, а територія, охоплювана електричною мережею, - усе ширше.