
- •1. Тиск газів. Закон Паскаля. Атмосферний тиск
- •2. Послідовне та паралельне з’єднання провідників в електричному колі.
- •3. Рівноприскорений рух. Вільне падіння .
- •4. Взаємодія струмів. Магнітне поле струму. Магнітна індукція. Сила Ампера. Сила Лоренца.
- •5. Механічний рух. Відносність руху. Система відліку. Шлях і переміщення. Додавання швидкостей.
- •6. Випаровування рідин. Насичуюча і ненасичуюча пара. Тиск насичуючої пари. Вологість повітря, її вимірювання
- •7. Рівномірний рух тіла по колу
- •8. Електромагнітні хвилі, їх випромінювання. Принципи сучасного радіозв’язку. Розвиток засобів зв’язку в Україні.
- •9. Гравітаційна взаємодія. Закон всесвітнього тяжіння. Деформація тіл. Закон Гука. Сила тертя.
- •10. Корпускулярно-хвильовий дуалізм. Тиск світла. Дослід Лебедєва. Хімічна дія світла.
- •11. Перший закон динаміки Ньютона. Інерціальні системи відліку. Принцип відносності у класичній механіці.
- •12. Закони відбивання та заломлення світла.
- •13. Маса, її вимірювання. Сила. Другий закон динаміки Ньютона.
- •14. Радіоактивність. Закон радіоактивного розпаду. Альфа-, бета-, гамма-випромінювання.
- •15. Третій закон Ньютона. Імпульс тіла. Закон збереження імпульсу. Значення робіт к. Ціолковського, ю. Кондратюка, с.Корольова у розвитку космонавтики.
- •16. Самоіндукція. Індуктивність. Енергія магнітного поля.
- •17. Рух тіла під дією кількох сил. Момент сили. .
- •18.Неперервний та лінійчатий спектри. Спектри поглинання та випромінювання. Спектральний аналіз та його застосування.
- •19. Фотоелементи та їх застосування в техніці.
- •20. Дифракція світла. Дифракційна решітка та її застосування
- •21. Склад атомного ядра. Відкриття нейтрона. Ізотопи
- •22. Генератор змінного струму. Трансформатор. Передавання енергії на відстань.
- •23. Основні положення молекулярно-кінетичної теорії. Пояснення агрегатних станів речовини на основі мкт. Маса і розмір молекул. Стала Авогадро.
- •Будь-які речовини мають дискретну (переривчасту) будову. Вони складаються з найдрібніших частинок молекул і атомів.
- •Молекули знаходяться в стані неперервного хаотичного (невпорядкованого) руху, що називається тепловим.
- •24. Лінзи. Формула тонкої Лінзи. Лінійне збільшення
- •25. Внутрішня енергія, способи її зміни. Кількість теплоти та робота. Перший закон термодинаміки
- •26. Вільні електромагнітні коливання у контурі. Перетворення енергії в коливальному контурі. Власна частота коливань у контурі
- •27. Температура, її фізичний зміст. Вимірювання температури. Температурні шкали.
- •28. Поділ ядер урану. Ланцюгова реакція. Ядерний реактор. Термоядерні реакції
- •29. Несамостійний і самостійний розряди у газах. Плазма, її використання.
- •30. Дослід Резерфорда. Ядерна модель атома. Квантові постулати Бора.
- •31. Електризація тіл. Електричний заряд, його дискретність. Закон збереження електричного заряду. Закон Кулона.
- •32. З'єднання конденсаторів у батарею.
- •33. . Електричне поле. Напруженість електричного поля. Лінії напруженості
- •34 Фотоелектричний ефект. Закони фотоефекту, їх пояснення на основі квантових уявлень. Рівняння Ейнштейна.
- •35. Робота при переміщенні заряджених тіл в електричному полі. Потенціал. Різниця потенціалів. Напруга.
- •36. Експериментальні методи реєстрації іонізуючих випромінювань. Поглинена доза випромінювання, її біологічна дія. Способи захисту від випромінювання
- •37. Електроємність. Конденсатор. Енергія електричного поля конденсатора (без виведення). Застосування конденсаторів у техніці.
- •38. Деформації. Види деформацій. Сила пружності. Закон Гука
- •39. Електричний струм. Закон Ома для ділянки кола. Опір.
- •40. Кристалічні та аморфні тіла. Поняття про рідкі кристали
- •41. Електрорушійна сила. Закон Ома для повного кола. Робота і потужність електричного струму.
- •42. Природа світла
- •43. Явище електромагнітної індукції. Закон електромагнітної індукції. Правило Ленца.
- •44. Побудова зображення за допомогою лінзи.
- •45. Електромагнітне поле, його матеріальність. Електромагнітні хвилі, їх властивості. Радіолокація, її застосування.
- •Блок-схема радіолокаційної станції.
- •46 Поверхневий натяг. Капілярні явища. Явища змочування і капілярності у природі і техніці.
- •47. Електричний струм у вакуумі. Електронна емісія. Електронно-променева трубка.
- •48. Ідеальний газ. Рівняння стану ідеального газу.
- •49. Електричний струм в електролітах. Закони електролізу. Застосування електролізу.
- •50. Шкала електромагнітних хвиль. Застосування інфрачервоного, ультрафіолетового та рентгенівського випромінювань.
- •51. Електричний струм у напівпровідниках. Залежність опору напівпровідників від температури та освітленості. Застосування напівпровідників.
- •52. Когерентність. Інтерференція, її застосування в техніці. Дисперсія світла.
19. Фотоелементи та їх застосування в техніці.
Явище фотоефекту практично було застосоване в пристроях для прямого перетворення світлової або сонячної енергії в електроенергію, які називаються фотоелементами (з англійської Photovoltaics, від грецького photos – світло і назви одиниці електрорушійної сили – вольт) (Додаток В). Історія фотоелементів бере початок в 1839 році, коли французький фізик Едмон Беккерель відкрив фотогальванічний ефект. За цим послідували подальші відкриття:
У 1883 р. електрик з Нью-Йорка Чарльз Фріттс виготовив фотоелементи з селену, які перетворять світло у видимому спектрі в електрику і мають ККД 1-2%. (світлочутливі елементи для фотоапаратів до цих пір роблять з селену).
На початку 50-х років ХХ століття був винайдений метод Чохральського, який застосовується для вирощування кристалічного кремнію.
Перша сонячна батарея була створена в 1953 році вченими Національного аерокосмічного агентства США, які створили справжню сонячну батарею - пристрій, що безпосередньо перетворює енергію сонця в електрику.
Спочатку це була просто демонстраційна модель. Якогось практичного вживання тоді не передбачалося із-за дуже малої потужності перших сонячних батарей.
Але з'явилися вони дуже вчасно, для них незабаром знайшлося відповідальне завдання.
Людство готувалося зробити крок в космос. Задача забезпечення енергією численних механізмів і приладів космічних кораблів стала однією з першочергових. Існуючі акумулятори, в яких можна б було запасти електричну енергію, неприйнятно громіздкі і важкі. Дуже велика частина корисного навантаження корабля пішла б на перевезення джерел енергії, які, крім того, поступово витрачаючись, скоро перетворилися б на даремний громіздкий баласт. Найпринаднішим було б мати на борту космічного корабля власну електростанцію, бажано - що обходиться без палива. З цієї точки зору сонячна батарея виявилася дуже зручним пристроєм. На цей пристрій і звернули увагу вчені на самому початку космічної ери.
Вже третій радянський штучний супутник Землі, виведений на орбіту 15 травня 1958 року, був оснащений сонячною батареєю. А зараз широко розкриті крила, на яких розміщені цілі сонячні електростанції, стали невід'ємною деталлю конструкції будь-якого космічного апарату. Невеликі (менше 1 вата) фотоелектричні батареї живили радіопередавач американського космічного супутника «Авангард». Взагалі, космічні дослідження зіграли важливу роль в розвитку фотоелементів.
У 1954 р. в лабораторії компанії «Bell Telephone» синтезували силіконовий фотоелектричний елемент з ККД 4%, надалі ефективність досягла 11%.
Під час нафтової кризи 1973-74 рр. відразу декілька країн запустили програми по використанню фотоелементів, що привело до установки і випробування понад 3100 фотоелектричних систем лише в Сполучених Штатах. Багато хто з них до цих пір знаходиться в експлуатації.
Подальша історія розвитку технології фотоелементів:
1974 - перша аморфна кремнієва батарея;
1983 - перша електростанція на основі сонячних батарей з потужністю більш 1мегаватт;
1984 - США, електростанція на основі сонячних батарей потужністю 6,5 мегават;
1985 - перша сонячна батарея з коефіцієнтом корисної дії більше 20%;
1987 - перше серійне виробництво сонячних батарей в Європі;
1989 - сонячна батарея з коефіцієнтом корисної дії більше 30%;
2007 - дослідники з Делавера (США) створили сонячну батарею, яка володіє рекордною ефективністю - 42,8%. Батарея, виконана на основі полікристалічного кремнію містить унікальну оптичну систему, що розділяє світло на декілька пучків з різною енергією і спрямовує їх на відповідні приймачі.