
- •1. Тиск газів. Закон Паскаля. Атмосферний тиск
- •2. Послідовне та паралельне з’єднання провідників в електричному колі.
- •3. Рівноприскорений рух. Вільне падіння .
- •4. Взаємодія струмів. Магнітне поле струму. Магнітна індукція. Сила Ампера. Сила Лоренца.
- •5. Механічний рух. Відносність руху. Система відліку. Шлях і переміщення. Додавання швидкостей.
- •6. Випаровування рідин. Насичуюча і ненасичуюча пара. Тиск насичуючої пари. Вологість повітря, її вимірювання
- •7. Рівномірний рух тіла по колу
- •8. Електромагнітні хвилі, їх випромінювання. Принципи сучасного радіозв’язку. Розвиток засобів зв’язку в Україні.
- •9. Гравітаційна взаємодія. Закон всесвітнього тяжіння. Деформація тіл. Закон Гука. Сила тертя.
- •10. Корпускулярно-хвильовий дуалізм. Тиск світла. Дослід Лебедєва. Хімічна дія світла.
- •11. Перший закон динаміки Ньютона. Інерціальні системи відліку. Принцип відносності у класичній механіці.
- •12. Закони відбивання та заломлення світла.
- •13. Маса, її вимірювання. Сила. Другий закон динаміки Ньютона.
- •14. Радіоактивність. Закон радіоактивного розпаду. Альфа-, бета-, гамма-випромінювання.
- •15. Третій закон Ньютона. Імпульс тіла. Закон збереження імпульсу. Значення робіт к. Ціолковського, ю. Кондратюка, с.Корольова у розвитку космонавтики.
- •16. Самоіндукція. Індуктивність. Енергія магнітного поля.
- •17. Рух тіла під дією кількох сил. Момент сили. .
- •18.Неперервний та лінійчатий спектри. Спектри поглинання та випромінювання. Спектральний аналіз та його застосування.
- •19. Фотоелементи та їх застосування в техніці.
- •20. Дифракція світла. Дифракційна решітка та її застосування
- •21. Склад атомного ядра. Відкриття нейтрона. Ізотопи
- •22. Генератор змінного струму. Трансформатор. Передавання енергії на відстань.
- •23. Основні положення молекулярно-кінетичної теорії. Пояснення агрегатних станів речовини на основі мкт. Маса і розмір молекул. Стала Авогадро.
- •Будь-які речовини мають дискретну (переривчасту) будову. Вони складаються з найдрібніших частинок молекул і атомів.
- •Молекули знаходяться в стані неперервного хаотичного (невпорядкованого) руху, що називається тепловим.
- •24. Лінзи. Формула тонкої Лінзи. Лінійне збільшення
- •25. Внутрішня енергія, способи її зміни. Кількість теплоти та робота. Перший закон термодинаміки
- •26. Вільні електромагнітні коливання у контурі. Перетворення енергії в коливальному контурі. Власна частота коливань у контурі
- •27. Температура, її фізичний зміст. Вимірювання температури. Температурні шкали.
- •28. Поділ ядер урану. Ланцюгова реакція. Ядерний реактор. Термоядерні реакції
- •29. Несамостійний і самостійний розряди у газах. Плазма, її використання.
- •30. Дослід Резерфорда. Ядерна модель атома. Квантові постулати Бора.
- •31. Електризація тіл. Електричний заряд, його дискретність. Закон збереження електричного заряду. Закон Кулона.
- •32. З'єднання конденсаторів у батарею.
- •33. . Електричне поле. Напруженість електричного поля. Лінії напруженості
- •34 Фотоелектричний ефект. Закони фотоефекту, їх пояснення на основі квантових уявлень. Рівняння Ейнштейна.
- •35. Робота при переміщенні заряджених тіл в електричному полі. Потенціал. Різниця потенціалів. Напруга.
- •36. Експериментальні методи реєстрації іонізуючих випромінювань. Поглинена доза випромінювання, її біологічна дія. Способи захисту від випромінювання
- •37. Електроємність. Конденсатор. Енергія електричного поля конденсатора (без виведення). Застосування конденсаторів у техніці.
- •38. Деформації. Види деформацій. Сила пружності. Закон Гука
- •39. Електричний струм. Закон Ома для ділянки кола. Опір.
- •40. Кристалічні та аморфні тіла. Поняття про рідкі кристали
- •41. Електрорушійна сила. Закон Ома для повного кола. Робота і потужність електричного струму.
- •42. Природа світла
- •43. Явище електромагнітної індукції. Закон електромагнітної індукції. Правило Ленца.
- •44. Побудова зображення за допомогою лінзи.
- •45. Електромагнітне поле, його матеріальність. Електромагнітні хвилі, їх властивості. Радіолокація, її застосування.
- •Блок-схема радіолокаційної станції.
- •46 Поверхневий натяг. Капілярні явища. Явища змочування і капілярності у природі і техніці.
- •47. Електричний струм у вакуумі. Електронна емісія. Електронно-променева трубка.
- •48. Ідеальний газ. Рівняння стану ідеального газу.
- •49. Електричний струм в електролітах. Закони електролізу. Застосування електролізу.
- •50. Шкала електромагнітних хвиль. Застосування інфрачервоного, ультрафіолетового та рентгенівського випромінювань.
- •51. Електричний струм у напівпровідниках. Залежність опору напівпровідників від температури та освітленості. Застосування напівпровідників.
- •52. Когерентність. Інтерференція, її застосування в техніці. Дисперсія світла.
15. Третій закон Ньютона. Імпульс тіла. Закон збереження імпульсу. Значення робіт к. Ціолковського, ю. Кондратюка, с.Корольова у розвитку космонавтики.
Третій закон Ньютона.
Рівність (2.2.10) виражає третій закон Ньютона: тіла взаємодіють одне з одним із силами, однаковими за модулем і протилежними за напрямом та напрямленими вздовж однієї прямої.
Кожна із сил
взаємодії прикладена до того тіла, на
яке вона діє, тобто ці сили прикладені
до різних тіл. Отже, сили взаємодії між
тілами не можуть зрівноважити
(компенсувати) одна одну, хоча формально
Наведемо приклади,
що ілюструють третій закон Ньютона.
Візьмемо в руки два однакові динамометри,
зчепимо їх гачками і будемо тягти в
різні боки (рис.2.2.10). Обидва динамометри
покажуть однакові за модулем сили
натягу, тобто
.
Поставимо на горизонтальну поверхню
два однакові візки і за допомогою двох
однакових динамометрів прикріпимо їх
до вертикальних стояків. На один візок
покладемо кусок металу, а на другий
-магніт (рис.2.2.11). Обидва візки рушать
назустріч один одному й обидва динамометри
покажуть однакові сили взаємодії, тобто
.
Тобто, з якою силою магніт притягує
кусок металу, з такою ж силою і метал
притягає до себе магніт.
Наведені приклади показують, що третій закон Ньютона виконується як у разі взаємодії безпосередньо контактуючих тіл, так і у разі взаємодії тіл завдяки наявності магнітного поля. Найпростішим буде таке формулювання третього закону Ньютона: дія дорівнює протидії.
Таким чином, перший
закон Ньютона стверджує: якщо на тіло
не діють сторонні тіла, то воно знаходиться
в стані спокою чи рівномірного
прямолінійного руху відносно ІСВ. З
нього випливає, що причиною зміни
швидкості тіла є сила. Другий закон
Ньютона пояснює, як рухається тіло під
дією сили. Він встановлює кількісне
співвідношення між
і
.
У першому і другому законах Ньютона
розглядається лише одне тіло. У третьому
законі розглядається взаємодія двох
тіл із силами, однаковими за модулем і
протилежними за напрямом. Ці сили
називають силами взаємодії. Вони
напрямлені вздовж однієї прямої і
прикладені до різних тіл. Між законами
Ньютона існує взаємний зв'язок: вони
виконуються лише в інерціальних системах
відліку.
Імпульс (кількість руху) тіла. Закон збереження імпульсу. Реактивний рух
Основні закони
механіки - перший і другий закони Ньютона
- дають змогу розв'язувати будь-які
механічні задачі. Але другий закон
Ньютона у вигляді
можна
застосовувати тільки для тіла з постійною
масою, якщо його швидкість набагато
менша від швидкості світла, а значення
маси m
значно перевищує значення мас елементарних
частинок.
Для розв'язування задач на рух тіл змінної маси застосовують другий закон Ньютона у найбільш загальному вигляді:
де
-
сила; Δt
- час дії сили;
-
зміна імпульсу тіла.
Імпульс тіла
- векторна фізична величина
.
А вираз
виражає
зміну імпульсу тіла. Зміна вектора
імпульсу тіла під дією постійної сили
дорівнює добутку сили на час її дії і
називається імпульсом сили.
Для визначення імпульсу системи тіл або точок потрібно знайти векторну суму імпульсів окремих частин системи:
Посилаючись на третій закон Ньютона і векторну рівність (2.3.1), можна довести, що зміна імпульсу системи тіл, які взаємодіють між собою, визначається векторною сумою всіх зовнішніх сил, які діють на систему:
Розглянемо це на прикладі зіткнення двох пружних тіл (рис.2.3.2).
Нехай два тіла масами
m1
і m2,
рухаються назустріч одне одному зі
швидкостями
і
.
Після зіткнення,
перше тіло набуде швидкості
,
а друге -
.
У момент удару на першу кулю діє сила
на другу:
За третім законом Ньютона ці сили рівні за величиною і протилежні за напрямом.
де в лівій частині рівності стоїть сума імпульсів до взаємодії, а в правій - сума імпульсів після взаємодії тіл.
Із отриманого виразу можна зробити висновок: сума імпульсів тіл, які утворюють замкнену систему, залишається незмінною за будь-яких взаємодій тіл цієї системи між собою.
Це твердження називають законом збереження імпульсу.
Замкненою системою називають групу тіл, які не взаємодіють ні з якими іншими тілами, що не входять до складу цієї групи. Сили взаємодії між тілами, що утворюють замкнену систему, називають внутрішніми.
Відзначимо, що закон збереження імпульсу універсальний, тобто виконується завжди.
Прикладом практичного застосування закону збереження імпульсу є реактивний рух, який виникає в результаті викиду частини маси тіла з деякою швидкістю, в результаті чого частина, що залишилась, отримує швидкість в протилежному напрямі (рис.2.3.3-2.3.5).
Розглянемо реактивний рух на прикладі ракети. Ракета складається з оболонки 1, відсіків з окислювачем 2 і паливом 4, що перетворюється в газ в камері згорання (рис.2.3.6, 2.3.7) та вилітає із сопла 3.
На старті ракети сума імпульсів оболонки і газу дорівнюють нулю. За законом збереження імпульсу ця сума має дорівнювати нулю і після взаємодії:
Спроектувавши
рівняння (2.3.3) на вісь Oх:
,
можна знайти швидкість оболонки:
Як бачимо, швидкість збільшується зі збільшенням швидкості вильоту газу із сопла, а також зі збільшенням відношення маси газу до маси оболонки.
Реактивний рух також здійснюють восьминоги, кальмари та деякі інші жителі Землі (рис.2.3.5).
На відміну від інших транспортних засобів пристрій з реактивним двигуном може рухатися в безповітряному просторі. Здійснення реактивного руху не потребує взаємодії тіла з навколишнім середовищем.
Першим проектом пілотованої ракети був проект ракети з пороховим двигуном українця М. Кибальчича. Російський учений К. Е. Ціолковський (1857 - 1935) (онук національного героя Северина Наливайка) став основоположником теорії космічних польотів. Він установив загальні основи теорії реактивного руху, розробив основні принципи і схеми реактивних літальних апаратів, довів необхідність використання багатоступінчастої ракети для міжпланетних польотів. Ідеї Ціолковського успішно реалізовані в СРСР та Україні для будівництва штучних супутників Землі і космічних кораблів.
Основоположник практичної космонавтики - український учений академік С.П. Корольов (1906 - 1966). Під його керівництвом був створений і запущений перший у світі штучний супутник Землі (4 жовтня 1957р.), відбувся перший в історії людства політ людини в космос. Першим космонавтом Землі 11 квітня 1961 р. став росіянин Ю.О.Гагарін (1934 - 1968), і ця подія стала початком космічної ери.
Багато працював над проблемами польотів у космос видатний український учений Ю. Кондратюк. Він розробив низку схем космічних подорожей, які, зокрема, використовували американські вчені для польотів своїх астронавтів на Місяць у 1969 р. У цілому із 25 найвидатніших учених у галузі космонавтики 23 мають українське походження.