
- •Предмет молекулярная физика. Основные положения мкт и их анализ. Идеальный газ.
- •Статистический и термодинамический методы описания систем многих частиц. Основное уравнение молекулярно–кинетической теории идеального газа.
- •Температура. Молекулярно-кинетический смысл температуры. Основные понятия термометрии.
- •Уравнения состояние и законы идеального газа.
- •Распределение максвелла. Характерные скорости распределения максвелла и их сравнение (вывод).
- •13.Задачи термодинамики. Нулевое начало. Внутренняя энергия тел. Внутренняя энергия.
- •15. Работа в термодинамике. Вычисление работы в изопроцессах иг.
- •Теплота. Теплоёмкость. Общее выражение для теплоёмкости. Теплоёмкость иг в изопроцессах.
- •17.Первое начало термодинамики и его различные формулировки
- •19.Адиабатный процесс. Уравнение адиабаты (вывод).
- •22 Второе начало термодинамики и его различные формулировки.
- •24. Первая теорема карно. (доказательство)
- •Вторая теорема карно. Неравенство клаузиуса.
- •Энтропия как функция состояния.
- •Изменение энтропии в иг.
- •30.Метод термодинамических потенциалов. Внутренняя энергия и свободная энергия Гельмгольца.
- •31.Метод термодинамических потенциалов. Энтальпия и потенциал Гиббса.
- •32.Соотношение взаимности Максвелла и их значение.
- •33.Критерии устойчивости термодинамических систем. Принцип Ле Шателье-Брауна. Общие критерии термодинамической устойчивости
- •Принцип Ле-Шателье – Брауна
- •34.Различные формы уравнения состояния реального газа. Уравнение Ван-дер-Ваальса. Изотермы реального газа.
- •35.Изотермы газа Ван-дер-Ваальса. Метастабильные состояния.
- •36.Критические состояния. Свойства вещества в критическом состоянии.
- •37.Приведенное уравнение Ван-дер-Ваальса.
- •38.Внутренняя энергия газа Ван-дер-Ваальса.
- •41.Эффект Джоуля-Томсона. Интегральный коэффициент дросселирования (a0; b 0). Температура инверсии.
- •42.Поверхностное натяжение. Энергетический и динамический смысл коэффициента поверхностного натяжения. Методы определения.
- •43.Условия равновесия на границе двух сред (жидкость жидкость).
- •44.Условия равновесия на границе двух сред (жидкость тв. Тело). Смачивание.
- •45.Давление под искривлённой поверхностью. Капилляры и капиллярные явления. Формула Лапласа.
- •46.Фазы и фазовые превращения. Условия равновесия двух фаз химически однородного вещества.
- •47. Диаграмма состояния. Тройная точка. Равновесие трёх фаз химически однородного вещества.
- •48. Уравнение Клапейрона-Клаузиуса. Фазовые переходы.
- •49. Динамическое равновесие на границе жидкость-пар. Зависимость давления насыщенного пара от температуры.
- •53.Процессы переноса,их природа.Общее ур-е процессов переноса.
- •54.Вязкость. Закон Ньютона для вязкого трения. Коэффициент вязкости и способы его измерения.
- •55.Теплопроводность.Закон Фурье.Коэфф. Теплопроводности.
- •56.Диффузия.Закон Фика.Коэфф. Диффузии. Связь между коэфф-ми процессов переноса.
35.Изотермы газа Ван-дер-Ваальса. Метастабильные состояния.
Метастабильное состояние в термодинамике, состояние неустойчивого равновесия физической макроскопической системы, в котором система может находиться длительное время. Примерами М. с. могут служить перегретая или переохлажденная жидкость и переохлажденный (пересыщенный) пар. Жидкость, например воду, тщательно очищенную от посторонних твёрдых частичек и пузырьков газа (центров парообразования), можно нагреть до температуры, превышающей температуру кипения при данном давлении. Если в перегретой жидкости возникнут центры парообразования (или их введут искусственно), то жидкость взрывообразно перейдёт в пар — устойчивое при данной температуре состояние. В свою очередь пар, в котором отсутствуют центры конденсации (твёрдые частицы, ионы), можно охладить до температур, при которых устойчиво жидкое состояние, и получить переохлажденный (пересыщенный) пар. В природе пересыщенный водяной пар образуется, например, при подъёме нагретых у поверхности земли воздушных масс и последующем их охлаждении, вызванном адиабатическим расширением.
Возникновение М. с. объясняется теорией термодинамического равновесия . Состоянию равновесия замкнутой системы соответствует максимум энтропии S. При постоянном объёме V и температуре Т равновесию отвечает минимум свободной энергии F (гельмгольцевой энергии), а при постоянном давлении р и температуре Т — минимум термодинамического потенциала G (гиббсовой энергии). Однако определённым значениям внешних параметров (р, V, Т и др.) может соответствовать несколько экстремумов (максимумов или минимумов) одной из перечисленных выше функций (рис.). Каждому из относительных минимумов функции F или G соответствует устойчивое по отношению к малым воздействиям или флуктуациям состояние. Такие состояния называют метастабильными. При небольшом отклонении от М. с. система возвращается в это же состояние, однако по отношению к большим отклонениям от равновесия она неустойчива и переходит в состояние с абсолютным минимумом термодинамического потенциала, которое устойчиво по отношению к конечным отклонениям значений физических параметров от равновесных. Т. о., хотя М. с. в известных пределах устойчиво, рано или поздно система всё же переходит в абсолютно устойчивое, стабильное состояние.
Возможность реализации М. с. связана с особенностями перехода системы из одного устойчивого состояния в другое (с кинетикой фазовых переходов). Фазовый переход начинается с возникновения зародышей новой фазы: пузырьков пара в случае перехода жидкости в пар, микрокристалликов при переходе жидкости в кристаллическое состояние и т.п. Для образования зародышей требуется совершение работы по созданию поверхностей раздела двух фаз. Росту образовавшихся зародышей мешает значительная кривизна их поверхности (см. Капиллярные явления), приводящая при кристаллизации к повышенной растворимости зародышей твёрдой фазы, при конденсации жидкости — к испарению мельчайших капелек, при парообразовании — к повышенной упругости пара внутри маленьких пузырьков. Указанные факторы могут сделать энергетически невыгодным возникновение и рост зародышей новой фазы и задержать переход системы из М. с. в абсолютно устойчивое состояние при данных условиях.
М. с. широко встречаются в природе и используются в науке и технике. С существованием М. с. связаны, например, явления магнитного, электрического и упругого гистерезиса, образование пересыщенных растворов, закалка стали, производство стекла и т.д.