
- •1. Тектоносфера: главные источники информации и основные представления.
- •2. Глубоководное бурение в океанах, сверхглубокое бурение на континентах и их значение для геотектоники.
- •3. Строение и состав континентальной земной коры.
- •4. Строение и состав океанической земной коры.
- •5. Изостазия и ее влияние на развитие тектонических процессов.
- •6. Представление об астеносфере и литосфере, их участие в тектонических движениях.
- •7. Слои пониженных скоростей сейсмических волн, их природа. Тектоническая расслоенность литосферы.
- •8. Наземные инструментальные методы изучения современных тектонических движений.
- •9. Методы космической геодезии и геотектонике.
- •10. Эвстатические изменения уровня океана и их причины.
- •11. Сейсмогенные движения и решение фокального механизма землетрясений.
- •12. Главные методы изучения новейших движений земной коры.
- •13. Метод фаций и мощностей в геотектонике.
- •14.Анализ фаций при изучении горизонтальных движений.
- •15. Объемный метод изучения тектонических движений, его возможности.
- •16. Анализ перерывов и несогласий при изучении тектонических движений.
- •17. Слоистость и цикличность осадочных толщ, как показатель тектонического режима.
- •18. Палеомагнитные методы изучения тектонических движений. Выявление ороклинальных изгибов. Палеоширотные определения.
- •19. Метод совмещения траекторий кажущейся миграции геомагнитного полюса.
- •20. Региональные сдвиги, их выявление, определение направления и амплитуды.
- •21. Палинспастические реконструкции.
- •22. Делимость современной литосферы на плиты и микроплиты. Границы литосферных плит, их главные виды.
- •23. Современные зоны рифтогенеза, их глобальная система.
- •24. Главные механизмы рифтогенеза, их проявление на континентах и в океанах.
- •25. Континентальные рифты: рельеф, тектоника, сейсмичность, тепловой поток, вулканизм.
- •26. Глубинное строение рифтовых зон на континентах. Происхождение асимметричных рифтов.
- •27. Рифтовые зоны в океанах, их строение и развитие.
- •28. Спрединг океанической коры, формирование ее слоев.
- •29. Система линейных магнитных аномалий океана, их датировка. Определение скоростей спрединга.
- •30. Условия заложения рифтовых зон. Активный и пассивный рифтогенез.
- •31. Преобразование океанической литосферы по мере ее перемещения от оси спрединга. Изменение глубин океана и теплового потока.
- •32. Эволюционный ряд рифтогенных структур.
- •33. Зоны трансформных разломов и их главные типы. Транстенсии и транспрессии.
- •34. Признаки смещения и переориентировки осей спрединга. Рассеянный спрединг.
- •35. Современные зоны субдукции, их главные типы.
- •36. Закономерности размещения современных зон субдукции. Значение глобальной ориентировки.
- •37. Кинематика субдукции.
- •38. Правило ортогональности субдукции.
- •39. Сейсмофокальные зоны Беньофа, их глубинность, профили, строение, напряжения в очагах.
- •40. Глубинное строение зону субдукции по геофизическим данным.
- •41. Гравиметрические и магнитные аномалии над зонами субдукции, распределение теплового потока.
- •42. Магматизм зон субдукции, закономерности его размещения.
- •43. Связь глубинных зон субдукции с их вулканическими поясами по данным геофизики.
- •44. Особенности состава магм над зонами субдукции, латеральная петрохимическая зональность.
- •45. Субдукционная аккреция и субдукционная эрозия, их геологическое выражение.
- •46. Выявление и реконструкция древних зон субдукции.
- •47. Обдукция океанической литосферы и ее предполагаемые механизмы.
- •48. Области коллизии континентальной литосферы: рельеф, структура, движения, вулканизм, глубинная характеристика.
- •49. Области эксгумации глубинных пород, данные термохронологии.
- •50. Внутриплитная тектоно-магматическая активность на континентах и океанах, мантийные плюмы.
- •51. «Горячие точки», их заложение и развитие во внутриплитных областях. Постулат неподвижности «горячих точек».
- •52. «Горячие точки» на дивергентных границах литосферных плит.
- •53. «Подводные горы» и гайоты, их происхождение и тектоническая интерпретация.
- •54. Горизонтальные движения относительные и «абсолютные», определение их направления и скорости.
- •55. «Асейсмичные хребты» в океанах, их главные типы и происхождение.
- •57. Островные дуги энсиалические и энсиматические.
- •58. Различие в строении и происхождении краевых морей.
- •60. Складчатые пояса континентов, их строение. Актуалистическая интерпретация.
- •61. Региональные надвиги, покровы, шарьяжи. Параутохтоны. Антиформы и синформы.
- •62. Офиолиты, их происхождение и структурное положение. Тектонический меланж
- •63. Концепция террейнов и изучение складчатых поясов.
- •64. Развитие складчатых поясов и циклы Вильсона.
- •65. Морфологические, кинематические и геологические типы складчатости
- •66. Развитие складок во времени, фазы и эпохи складчатости.
- •67. Древние платформы континентов, их строение.
- •68. Молодые платформы, особенности их строения и развития.
- •69. Суперконтиненты в геологической истории.
- •70. Основные геотектонические гипотезы: локальные и глобальные.
38. Правило ортогональности субдукции.
Давно замечено, что конвергенция литосферных плит при субдукции происходит в направлении, секущем простирание желоба под большим углом. Угол относительно желоба в 80% случаев превышает 60°. Если определять направление конвергенции не по координатам полюса вращения, а непосредственно по решениям фокального механизма сейсмических очагов в верхах зоны Беньофа, то угол, превышающий 60°, наблюдается более чем в 90% случаев. Таким образом, эмпирически установлена приблизительная ортогональность субдукции относительно конвергентной границы. Расчетами показано, что фрикционное сопротивление субдукции минимально при относительном угле 90° и нарастает по мере уменьшения угла до 45°. В этом усматривают динамическое обоснование ортогональности субдукции. Как полагают, при постепенном повороте висячего крыла зоны субдукции (а значит, и конвергентной границы плит) должно соответственно изменяться и направление субдукции, что документируется формированием океанской литосферы с веерообразным рисунком линейных магнитных аномалий (например, на отрезке Восточно-Тихоокеанского хребта между разломами Ривера и Клиппертон, где шло приспособление к ориентировке Центральноамериканского желоба).
Следствием может быть даже распад единой субдуцирующей плиты на части, движущиеся в различных направлениях. С таких позиций объясняют, в частности, дробление плиты Фаралон в позднем кайнозое. В течение палеогена ее субдукция происходила под все более острыми углами к Кордильерской и Андской континентальным окраинам, что привело в неогене к обособлению плит Хуан-де-Фука, Кокос, Наска (и ряда более мелких плит), каждая из которых субдуцирует под свой участок континентальной окраины почти ортогонально.
Первичность ориентировки глубоководных желобов и приспособление к ним (вторичность) ориентировки вектора субдукции наиболее очевидны для активных континентальных окраин. Для островодужных систем, особенно океанских, во многих случаях более вероятны обратные соотношения. Если внешнее воздействие резко меняет направление, в котором перемещается субдуцирующая плита, то происходит отмирание прежней зоны субдукции и заложение новой, с использованием какой-нибудь ослабленной зоны в океанской литосфере, вытянутой поперек движения плиты. При зарождении океанских зон субдукции, вероятно, используются благоприятно ориентированные трансформные разломы. Таким представляют механизм заложения островодужных систем: Алеутской, Кюсю — Палау, Идзу-Бонинской и ряда других.
В целом есть основания полагать, что ортогональные системы субдукции устойчивы благодаря своим энергетическим преимуществам, а будучи нарушенными, имеют тенденцию восстанавливаться. В этом, по-видимому, не только один из механизмов, но и одна из причин происходившей время от времени реорганизации систем спрединга—субдукции.
Правило ортогональности субдукции используют при палеотектонических реконструкциях для решения обратной задачи: по простиранию древней зоны субдукции определяют наиболее вероятное направление сближения литосферных плит.
Косоориентированная к глубоководному желобу субдукция наблюдается в сравнительно небольшом числе зон (или их отрезков), она находит заметное отражение в тектонике активной континентальной окраины или островной дуги и задуговой области. Для структурного парагенеза в таких случаях характерны продольные сдвиги и ориентированные кулисообразно системы структур сжатия или растяжения, подобных рифтовым расщелинам трога Окинава над зоной субдукции Рюкю. Образуются и эшелонированные системы разрывов, контролирующих вулканизм. В тылу вулканического пояса косоориентированные напряжения реализуются раскрытием задуговых спрединговых бассейнов типа pull-apart; так образовалась впадина Андаман над Зондской зоной субдукции.
При дугообразной конфигурации зоны субдукции может оказаться, что вектор косоориентированной конвергенции на одном из флангов дуги все больше приближается к касательному (относительно желоба) направлению, как это происходит вдоль Алеутского желоба с востока на запад, по мере приближения к Командорским островам. Субдукция перерождается в трансформное смещение, что отражается, в частности, на сейсмичности, деформациях, вулканизме.