
- •Содержание
- •Введение
- •1. Водоемы и показатели качества воды
- •1.1. Разнообразие континентальных водоемов
- •1.2. Показатели экологического состояния водоемов и качества поверхностных вод
- •1.2.1. Температура воды
- •1.2.2. Органолептические показатели
- •Цветность воды
- •Прозрачность. Прозрачность (или светопропускание) природных вод обусловлена их цветом и мутностью, т.Е. Содержанием в них различных окрашенных и взвешенных органических и минеральных веществ.
- •Выполнение анализа
- •Определение интенсивности запаха воды
- •Характер и интенсивность запаха
- •Воздух вдыхайте осторожно, не допуская глубоких вдохов!
- •Определение характера и интенсивности вкуса и привкуса
- •Мутность воды
- •1.2.3. Гидрохимические показатели
- •Группы природных вод в зависимости от рН
- •1.2.4. Минеральный состав
- •Классификация природных вод по минерализации
- •Основные компоненты минерального состава воды
- •Определение общей жесткости
- •Выполнение анализа
- •Определение магния
- •Оборудование и реактивы
- •3. Определение ионных форм, обусловливающих потребление кислоты на титрование
- •Определение ионных форм, обусловливающих потребление кислоты на титрование
- •Расчет массовой концентрации карбонат- и гидрокарбонат-анионов
- •Расчет карбонатной жесткости
- •Расчет щелочности
- •Выполнение анализа
- •Содержание аммония в водоемах с различной степенью загрязненности
- •Азот общий. Под общим азотом понимают сумму минерального и органического азота в природных водах.
- •Сумма минерального азота. Сумма минерального азота – это сумма аммонийного, нитратного и нитритного азота.
- •Аммиак. В природной воде аммиак образуется при разложении азотсодержащих органических веществ. Хорошо растворим в воде с образованием гидроксида аммония.
- •Формы фосфора в природных водах
- •Полифосфаты. Полифосфаты можно описать следующими химическими формулами:
- •Определение концентрации сульфат-аниона
- •Массовую концентрацию катиона натрия (сна) в мг/л определяют расчетным методом, производя вычисление по формуле:
- •Коэффициенты пересчета концентраций из мг/л в мг-экв/л
- •1.3. Растворенный кислород
- •1.3.1. Биохимическое потребление кислорода (бпк)
- •Величины бпк5 в водоемах с различной степенью загрязненности [1]
- •1.3.2. Окисляемость, или химическое потребление кислорода (хпк)
- •Значения хпКтеор для разных соединений
- •1.3.3. Бихроматная окисляемость (ускоренный метод)
- •1.4. Металлы в воде
- •2. Анализ и оценка качества воды
- •2.1. Полевые методы анализа
- •2.1.1. Особенности выполнения анализа колориметрическими методами
- •2.1.2. Особенности выполнения анализа титриметрическим методом
- •2.1.3. Система контроля правильности и точности результатов
- •2.1.4. Меры безопасности при выполнении анализов
- •2.1.5. Отбор проб воды и их консервация
- •Способы консервации, особенности отбора и хранения проб
- •2.2. Гидробиологические методы анализа
- •2.3. Комплексная оценка качества воды
- •Классы качества воды
- •Весовые коэффициенты показателей при расчете пкв по данным Национального Санитарного Фонда сша
- •Классы качества вод в зависимости от индексов сапробности
- •Классы качества воды по микробиологическим показателям
- •3. Организация мониторинга водных объектов
- •3.1. Нормирование качества природных вод
- •3.1.1. Качество вод и виды водопользования
- •3.2. Государственный экологический мониторинг в рф
- •3.2.1. Установление местоположения створов в пунктах наблюдений
- •3.2.2. Программы наблюдений за качеством воды
- •Обязательная программа наблюдений
- •Программы и периодичность наблюдений для пунктов различных категорий
- •Периодичность проведения наблюдений по гидробиологическим показателям и виды программ
- •3.3. Общественный экологический мониторинг
- •Маркерные характеристики для различных типов загрязнения
- •4. Особенности качества воды в реках цчр
- •4.1. Общая характеристика речной сети
- •4.2. Оценка загрязнения поверхностных вод
- •4.2.1. Черноморский гидрографический район Бассейн р. Днепр
- •4.2.2. Азовский гидрографический район
- •Бассейн р. Дон
- •Водность, % от средней многолетней, рек бассейна р. Дон
- •4.2.3. Бассейн Каспийского моря Бассейн реки Цна
- •4.3. Влияние загрязняющих веществ на здоровье
- •Заболевания, которые могут быть связаны с загрязнением окружающей среды
- •Библиографический список
- •Приложения
- •Приготовление контрольных шкал образцов окраски для визуального колориметрирования
- •Реактивы-стандарты для приготовления контрольных шкал
- •Алгоритм приготовления шкалы эталонных растворов общего железа
- •Алгоритм приготовления шкалы эталонных растворов нитрит-аниона
- •Алгоритм приготовления шкалы эталонных растворов нитрат-аниона
- •Алгоритм приготовления шкалы буферных эталонных растворов
- •Определяемые показатели и результаты анализов
- •Результаты дополнительных анализов
- •Приготовление реагентов и растворов для анализа
- •Раствор буферный ацетатно-аммонийный
- •Реактив Грисса
- •Термины и определения
- •Перечень расчетных оценочных показателей степени загрязненности поверхностных вод
- •Перечень ингредиентов и показателей качества воды для расчета комплексных оценок
- •Категории воды в зависимости от значений коэффициентов комплексности загрязненности воды водного объекта
- •Классификация качества воды водотоков по значению комбинаторного индекса загрязненности воды
- •Классификация качества воды водотоков по значению удельного комбинаторного индекса загрязненности воды
- •Классификация воды водных объектов по повторяемости случаев загрязненности
- •Классификация воды водных объектов по кратности превышения пдк
- •Примеры расчета комплексных показателей степени загрязненности воды
- •Словарь терминов
- •Анализ и оценка качества поверхностных вод Учебное пособие
- •308015 Г. Белгород, ул. Победы, 85
Массовую концентрацию катиона натрия (сна) в мг/л определяют расчетным методом, производя вычисление по формуле:
СНА = (А-СОЖ) • 23,
где: А – сумма массовых концентраций главных анионов (определяется с использованием данных табл. 14), мг-экв/л;
СОЖ – значение общей жесткости, мг-экв/л;
23 – эквивалентная масса натрия.
Калий. Калий – один из главных компонентов химического состава природных вод. Источником его поступления в поверхностные воды являются геологические породы (полевой шпат, слюда) и растворимые соли. Различные растворимые соединения калия образуются также в результате биологических процессов, протекающих в коре выветривания и почвах. Для калия характерна склонность сорбироваться на высокодисперсных частицах почв, пород, донных отложений и задерживаться растениями в процессе их питания, роста. Это приводит к меньшей подвижности калия по сравнению с натрием, и поэтому калий находится в природных водах, особенно поверхностных, в более низкой концентрации, чем натрий.
В природные воды калий поступает также с хозяйственно-бытовыми и промышленными сточными водами, а также с водой, сбрасываемой с орошаемых полей, и с поверхностным водным стоком с сельскохозяйственных угодий.
Концентрация в речной воде обычно не превышает 18 мг/дм3, в подземных водах колеблется от миллиграммов до граммов и десятков граммов в 1 дм3, что определяется составом водовмещающих пород, глубиной залегания подземных вод и другими условиями гидрогеологической обстановки. |
ПДКвр калия составляет 50 мг/дм3. |
Фтор (фториды). В речные воды фтор поступает из пород и почв при разрушении фторсодержащих минералов (апатит, турмалин) с почвогрунтовыми водами и при непосредственном смыве поверхностными водами. Источником фтора также служат атмосферные осадки. Повышенное содержание фтора может быть в некоторых сточных водах предприятий стекольной и химической промышленности (производство фосфорных удобрений, стали, алюминия), в некоторых видах шахтных вод и в сточных водах рудообогатительных фабрик.
В природных водах фтор находится в виде фторид-иона F- и комплексных ионов [AlF6]3-, [FeF4]-, [FeF5]2-, [FeF6]3-, [CrF6]3-, [TiF6]2- и др.
Миграционная способность фтора в природных водах в значительной степени зависит от содержания в них ионов кальция, дающих с ионами фтора малорастворимое соединение (произведение растворимости фторида кальция L = 4·10-11). Большую роль играет режим углекислоты, которая растворяет карбонат кальция, переводя его в гидрокарбонат. Повышенные значения рН способствуют увеличению подвижности фтора.
Содержание фтора в речных водах колеблется от 0,05 до 1,9 мг/дм3, атмосферных осадках – от 0,05 до 0,54 мг/дм3, подземных водах – от 0,3 до 4,6 мг/дм3. В термальных водах концентрация фтора достигает в отдельных случаях 10 мг/дм3, в океанах фтора содержится до 1,3 мг/дм3. |
Фтор является устойчивым компонентом природных вод. Внутригодовые колебания концентрации фтора в речных водах невелики (обычно не более, чем в 2 раза). Фтор поступает в реки преимущественно с грунтовыми водами. Содержание фтора в паводковый период всегда ниже, чем в меженный, так как понижается доля грунтового питания.
Повышенные количества фтора в воде (более 1,5 мг/дм3) оказывают вредное действие на людей и животных, вызывая костное заболевание (флюороз). Кроме того, избыток фтора в организме осаждает кальций, что приводит к нарушениям кальциевого и фосфорного обменов. Однако очень низкое содержание фтора в питьевых водах (менее 0,01 мг/дм3) также вредно сказывается на здоровье, вызывая опасность заболевания кариесом зубов. По этим причинам определение концентрации фтора в питьевой воде, а также грунтовых водах (например, воде колодцев и артезианских скважин) и воде водоемов хозяйственно-питьевого назначения является очень важным.
ПДКв фтора составляет 1,5 мг/дм3 (лимитирующий показатель вредности – санитарно-токсикологический). |
Предлагаемый метод определения фтора в воде основан на реакции фторидов с лантанализаринкомплексоном. При этом образуется окрашенное в синий цвет тройное комплексное соединение фторида, трехвалентного лантана и ализаринкомплексона.
Определению мешают соединения алюминия, железа и повышенное содержание органических веществ. Алюминий связывает фторид-ионы с образованием комплексов А1F2+ и А1F2+. Ввиду того, что содержание алюминия в питьевой и природных водах, имеющих обычно рН 6-8, как правило, очень незначительно, влиянием алюминия пренебрегают.
На определение фтора в данной модификации метода оказывают заметное влияние соединения железа при концентрации более 2 мг/л. Поэтому в сильно железистых водах определение фтора данным методом не проводят (для этой цели используют потенциометрический метод).
При повышенном содержании в анализируемой воде растворенных органических веществ колориметрируемая жидкость приобретает другую (маскирующую) окраску, отличающуюся по цвету от окраски, вызываемой только фторидами. Для устранения этого явления пробу предварительно следует очистить от органических веществ – встряхивать воду с небольшим количеством порошкообразного активированного угля, после чего отфильтровать от угля и только после этого анализировать на содержание фтора.
Оборудование и реактивы
Колориметрическая пробирка с меткой «5 мл», ножницы.
Буферная смесь янтарно-борная в капсулах по 0,1 г, лантанализаринкомплексоновый лак.
Контрольная шкала образцов окраски для определения фторид-иона (0; 0,5-1,2; 1,5-2,0 мг/л) из состава тест-комплекта либо приготовленная самостоятельно.
О приготовлении растворов см. приложение 3.
Выполнение определения
1. Налейте в колориметрическую пробирку анализируемую воду до метки (5 мл).
Добавьте содержимое одной капсулы (около 0,1 г) буферной смеси. Перемешайте пробирку встряхиванием до растворения смеси (до рН 5).
Добавьте с помощью шприца с наконечником-пипеткой 2,0 мл лантанализаринкомплексонового лака, после чего смесь снова перемешайте.
Оставьте смесь на 20 мин. для завершения реакции.
Окраску раствора в склянке сравните на белом фоне с контрольной шкалой образцов окраски.
В случае, если окраска пробы окажется интенсивнее образца «2,0 мг/л», анализируемую воду разбавьте в 2-5 раз дистиллированной водой и определение повторите. При вычислении результата учтите величину разбавления пробы.
Контроль точности анализа
Контроль точности анализа при определении фторидов проводят с использованием контрольных растворов с известным содержанием фторид-аниона (см. приложение 1) либо с использованием поверенного (образцового) ионселективного электрода потенциометрическим методом.
Общее солесодержание. Для расчета общего солесодержания по сумме концентраций главных анионов в миллиграмм-эквивалентной форме их массовые концентрации, определенные при анализе и выраженные в мг/л, умножьте на коэффициенты, указанные в табл. 14, после чего просуммируйте (ГОСТ 1030).
Таблица 14