
- •1. Основные физико-механические свойства бетона, стальной арматуры и железобетона
- •1.1. Бетон
- •Общие сведения
- •1.1.2. Структура (строение) бетона
- •Усадка бетона и начальные напряжения
- •Прочность бетона
- •1.1.5. Классы и марки бетона
- •Деформативность бетона
- •Поперечные деформации бетона.
- •1.1.7. Модуль деформаций бетона
- •1.2. Арматура для железобетонных конструкций
- •1.2.1. Назначение арматуры и требования к ней
- •1.2.2. Виды арматуры
- •1.2.3. Физико-механические свойства арматурных сталей
- •1.2.4. Классификация арматуры по основным характеристикам. Сортамент арматуры
- •1.2.5. Сварные арматурные изделия
- •1.2.6. Соединения арматуры
- •1.3. Железобетон
- •1.3.1. Общие сведения
- •1.3.2. Содержание арматуры
- •1.3.3. Значение трещиностойкости
- •1.3.4. Сцепление арматуры с бетоном
- •1.3.5. Анкеровка арматуры в бетоне
- •1.3.6. Усадка бетона при наличии арматуры
- •1.3.7. Ползучесть бетона при наличии арматуры
- •1.3.8. Коррозия железобетона и меры защиты от неё
- •1.3.9. Защитный слой бетона и минимальные расстояния между стержнями
- •2. Экспериментальные основы теории сопротивления железобетона и методы расчёта железобетонных конструкций
- •2.1. Общие сведения
- •2.2. Три стадии напряжённо-деформированного состояния железобетонных элементов
- •2.3. Методы расчёта железобетонных конструкций
- •2.4. Метод расчёта железобетонных конструкций по предельным состояниям
- •2.4.1. Сущность метода
- •2.4.2. Две группы предельных состояний
- •2.4.3. Расчётные факторы
- •2.4.4. Классификация нагрузок. Нормативные и расчётные нагрузки
- •2.4.5. Степень ответственности зданий и сооружений
- •2.4.6. Нормативные и расчётные сопротивления бетона
- •2.4.7. Нормативные и расчётные сопротивления арматуры
- •2.4.8. Структура расчётных формул
- •2.4.9. Общий способ расчёта прочности железобетонных элементов
- •Список литературы
- •Основы теории сопротивления железобетона и физико-механические свойства материалов
- •603600. Н.Новгород, ул. Ильинская, 65.
- •603950 Н.Новгород, ул. Ильинская, 65.
Усадка бетона и начальные напряжения
Бетон обладает свойством уменьшаться в объёме при твердении в обычной воздушной среде (усадка бетона) и увеличиваться в объёме при твердении в воде или сильно влажной среде (набухание бетона).
Усадка бетона происходит в результате кристаллизации цементного камня и интенсивного испарения воды с поверхностных слоев бетона. Она особенно интенсивно протекает в первые две недели твердения бетона. Через год её можно считать практически закончившейся.
Как показывают опыты, величина усадки бетона зависит от целого ряда причин:
количества и вида цемента (его минералогического состава) - чем больше расход цемента на единицу объёма бетона, тем (при прочих равных условиях) больше усадка; при этом бетоны, приготовленные на высокоактивных и глинозёмистых цементах, дают большую усадку. Наименьшей усадкой обладают бетоны, приготовленные на портландцементе;
количества воды - чем больше W/C, тем больше усадка;
крупности заполнителей и их вида - при мелкозернистых песках и пористом щебне усадка больше. Чем выше способность заполнителей сопротивляться деформированию, т. е. чем выше их модуль упругости, тем усадка меньше. При разной крупности зёрен заполнителей и меньшем объёме пустот меньше и усадка;
от влажности окружающей среды - чем ниже влажность, тем больше усадка;
от наличия и состава различных гидравлических добавок и ускорителей твердения – они (например, хлористый кальций), как правило, увеличивают усадку;
влияние пропаривания бетона на процесс усадки изучено пока недостаточно; однако имеются данные о том, что после пропаривания усадка уменьшается примерно в 1,5 раза;
наличия заполнителей с глинистыми и пылевидными загрязнениями – при их использовании усадочные деформации бетона могут увеличиться в несколько раз.
Средняя величина годичной усадки тяжёлого бетона средней прочности, приготовленного на портландцементе, при естественном твердении составляет esl = 3·10-4 относительных единиц. Абсолютная величина деформации набухания примерно в 2...5 раз меньше усадки.
Деформацию усадки бетона можно представить как сумму деформаций двух видов - собственно усадки и влажностной усадки.
Собственно усадка происходит в результате уменьшения истинного объёма системы «цемент – вода» при гидратации. Она может развиваться при полной изоляции бетона от внешней среды и всегда ведёт к необратимому уменьшению первоначального объёма.
Влажностная усадка связана с уменьшением влагосодержания бетона, т. е. с испарением свободной воды в цементном камне и обусловлена капиллярными явлениями (натяжением менисков в порах цементного камня); она частично обратима: при твердении на воздухе происходит уменьшение объёма (усадка), а при достаточно большом притоке влаги - увеличение объёма (набухание).
Деформации, происходящие вследствие влажностной усадки бетона, по величине в 10...20 раз превышают деформации собственно усадки. Поэтому изменение влагосодержания бетона - основная причина усадочных деформаций.
Усадка повышает сцепление арматуры с бетоном, вызывая её обжатие, что является положительным фактором.
В реальных условиях усадка бетона происходит неравномерно: развитие усадки начинается с поверхности бетона и постепенно, по мере его высыхания, распространяется вглубь. Уменьшение объёма цементного камня встречает сопротивление со стороны инертных составляющих бетона, которые стремятся сохранить свой объём постоянным. Возникающие при этом внутренние усилия могут служить причиной микроразрушений на границе цементно-песчаного камня и крупного заполнителя и даже в самом цементно-песчаном камне. Образующиеся при этом микро- и макротрещины отрицательно влияют на физико-механические свойства бетона. Особенно существенно сказывается влияние усадки на напряженно-деформированное состояние в массивных конструкциях (плотины и т. п. конструкции).
Уменьшения начальных усадочных напряжений в бетоне и тем самым предотвращения образования усадочных трещин можно добиться технологическими мерами — правильным подбором состава бетона (за счёт уменьшения объёма пор), увлажнением среды при тепловой обработке твердеющего бетона, увлажнением, особенно в первые дни, поверхности бетона при естественном твердении и др., а также конструктивными мерами - например, устройством усадочных швов в конструкциях большой протяженности, установкой противоусадочных сеток.
Бетоны, приготовленные на специальных цементах (расширяющемся или безусадочном) усадки не дают. Особо прочные бетоны - класса В100 и выше - также практически не дают усадки.