
- •Современное состояние и перспективы развития лучевой диагностики
- •6.Интервенционная радиология
- •Особенности отдельных методов диагностики на современном этапе
- •Лучевое исследование легких
- •Лучевое исследование сердца и магистральных сосудов
- •Рентгенологическое исследование сердца и магистральных сосудов.
- •Приобретенные пороки сердца
- •Недостаточность клапанов аорты
- •Перикардиты
- •Формы: 1. Фиброзный перикардит
- •Миокардиты
- •Рентгенологическое исследование желудочно-кишечного тракта
- •Рентгеноанатомия
- •Рентгеносемиотика заболеваний пищевода, желудка, толстой кишки (основные синдромы)
- •Заболевания пищевода
- •Заболевания желудка
- •Лучевая диагностика опорно-двигательной системы
- •Контрастные методы исследования в лучевой диагностике
- •Основы медицинской радиологии
- •Радионуклидные исследования принципы, методы, возможности
- •Преимущества радионуклидной диагностики:
- •Литература
- •Оглавление
Контрастные методы исследования в лучевой диагностике
Получение рентгеновского изображения связано с неравномерным поглощением лучей в объекте. Чтобы последний получил изображение, он должен иметь неодинаковое строение. Отсюда, некоторые объекты, как мягкие ткани, внутренние органы на обычных снимках не видны и требуют для своей визуализации применения контрастных средств (КС).
Вскоре, после открытия рентгеновых лучей, стали развиваться идеи получения изображения различных тканей с помощью КС. Одним из первых КС , которым сопутствовал успех, были соединения йода (1896). Впоследствии широкое применение в клинической практике, нашел буроселектан (1930) для исследования печени, содержавший один атом йода. Уроселектан явился прототипом всех КС, созданных позднее для исследования мочевыделительной системы. Вскоре появился уроселектан (1931), уже содержавший две молекулы йода, что позволило улучшить контрастность изображения при хорошей переносимости его организмом. В 1953 году появился трийодированный препарат урографин, оказавшийся полезным и для ангиографии.
В современной визуализированной диагностике КС обеспечивают существенное повышение информативности рентгенологических методов исследования, РКТ, МРТ и ультразвуковой диагностике. Все КС имеют одно назначение – увеличить разницу между различными структурами в отношении их способности абсорбировать или отражать электромагнитные излучения или ультразвука. Для выполнения своей задачи КС должны достичь определенной концентрации в тканях и быть безвредными, что, к сожалению, невозможно, так как они часто приводят к нежелательным последствиям. Отсюда, поиски высокоэффективных и безвредных КС продолжаются. Актуальность проблемы возрастает с появлением новых методов (РКТ, МРТ, УЗИ).
Современные требования к КС: 1) хорошая (достаточная) контрастность изображения, т.е. диагностическая эффективность, 2) физиологическая обоснованность (органоспецифичность, выведение по пути из организма), 3) общедоступность (экономичность), 4) безвредность (отсутствие раздражений, токсических повреждений и реакций), 5) простота введения и быстрота выведения из организма.
Пути введения КС чрезвычайно разнообразны: через естественные отверстия (слезные точки, наружный слуховой проход, через рот и др.), через послеоперационные и патологические отверстия (свищевые ходы, соустья и др.), через стенки с/с и лимфатической системы (пункция, катетеризация, секция и др.), через стенки патологических полостей (кисты, абсцессы, каверны и др.), через стенки естественных полостей, органов, протоков (пункция, трепанация),введения в клетчаточные пространства (пункция).
В настоящее время все КС делятся на:
рентгенологические
МРТ – контрастные вещества
УЗ – контрастные вещества
флюоресцирующие (для маммографии).
С практической точки зрения КС целесообразно подразделить на: 1) традиционные рентгенологические и КТ- контрастные средства, а также нетрадиционные, в частности, созданные на основе сернокислого бария.
Традиционные рентгеноконтрастные средства делятся на: а) негативные (воздух, кислород, углекислый газ и др.), б) позитивные, хорошо поглощающие рентгеновские лучи. Контрастные средства этой группы ослабляют излучение в 50-1000 раз по сравнению с мягкими тканями. Позитивные КС в свою очередь делятся на растворимые в воде (йодистые препараты) и нерастворимые в воде (сульфат бария).
Йодистые контрастные средства – их переносимость больными объясняется двумя факторами: 1) осмолярностью и 2) хемотоксичностью, включая и ионное воздействие. Для снижения осмолярности был предложен: а) синтез ионных димерных КС и б) синтез неионных мономеров. Например, ионные димерные КС были гиперосмолярными (2000 м моль/л.), тогда как ионные димеры и неионные мономеры уже имели осмолярность значительно ниже (600-700 м моль/л), снизилась и их хемотоксичность. Неионный мономер «Омнипак» начал применяться с 1982 года и судьба его сложилась блестяще. Из неионных димеров «Визипак» - следующий шаг в развитии идеальных КС. Он обладает изоосмолярностью, т.е. его осмолярность равна плазме крови (290 м моль/л). Неионные димеры больше всех КС на данном этапе развития науки и технологий соответствуют понятию «Идеальные контрастные средства».
КС для РКТ. В связи с широким распространением РКТ стали разрабатываться КС селективного контрастирования для различных органов и систем, в частности, почек, печени, так как современные водорастворимые холецистографические и урографические КС оказались недостаточными. В определенной степени требованиям КС при РКТ отвечает «Йозефанат». Это КС избирательно концентрируется в функционирующих гепатоцитах и может использоваться при опухолях и циррозах печени. Хорошие отзывы поступают и при использовании «Визипака», а также капсулированного «Йодиксанола». Все эти КС при КТ перспективны при визуализации метастазов печени, карцином печени, гемангиом.
Как ионные, так и неионные (в меньшей степени) могут вызвать реакции и осложнения. Побочные действия йодсодержащих КС составляют серьезную проблему. По данным межународной статистики, поражение почек КС остается одним из основных видов ятрогенной почечной недостаточности, составляющей около 12% госпитальной острой почечной недостаточности. Васкулярная боль при в/в введении препарата, ощушение жара во рту, горький вкус, озноб, покраснение, тошнота, рвота, боль в животе, учащение пульса, ощущение тяжести в грудной клетке – далеко неполный перечень раздражающего действия КС. Может быть остановка сердца и дыхания, в отдельных случаях наступает смерть. Отсюда, различают три степени тяжести побочных реакций и осложнений: 1) легкие реакции («горячие волны», гиперемия кожных покровов, тошнота, небольшая тахикардия). Медикаментозной терапии не требуется; 2) средняя степень (рвота, сыпь, коллапс). Назначаются с/с и противоаллергические средства; 3) тяжелые реакции (анурия, поперечный миелит, остановка дыхания и сердца). Предсказать заранее реакции невозможно. Все предложенные методы профилактики оказались неэффективными. В последнее время предлагают пробу «на кончике иглы». В ряде случаев рекомендуется премедикация, в частности преднизолоном и его производными.
В настоящее время лидерами качества среди КС являются «Омнипак» и «Ультравист», которые обладают высокой местной переносимостью, общей низкой токсичностью, минимальными гемодинамическими действиями и высоким качеством изображения. Используются при урографии, ангиографии, миелографии, при исследовании ЖКТ и др.
Рентгеноконтрастные вещества на основе сернокислого бария. Первые сообщения об использовании водной взвеси сернокислого бария в качестве КС принадлежат Р. Краузе (1912г.). Сернокислый барий хорошо поглощает рентгеновы лучи, легко смешивается в различных жидкостях, не растворяется и не образует различных соединений с секретами пищеварительного канала, легко измельчается и позволяет получать взвесь необходимой вязкости, хорошо прилипает к слизистой оболочке. На протяжении 80-ти с лишним лет совершенствуется методика приготовления водной взвеси сернокислого бария. Основные требования её сводятся к максимальной концентрации, мелкодисперстности и адгезивности. В связи с этим предложено несколько методов приготовления водной взвеси сернокислого бария:
Кипячение (1 кг бария подсушивают, просеивают, добавляют 800 мл воды и кипятят в течении 10-15 минут. Затем пропускают через марлю. Такая взвесь может храниться 3-4 дня);
Для достижения высокой дисперстности, концентрации и вязкости в настоящее время широко используют высокоскоростные смесители;
На вязкость и контрастность большое влияние оказывают различные стабилизирующие добавки (желатин, карбоксиметилцеллюлоза, слизь семени льна, крахмал и др.);
Использование ультразвуковых установок. При этом взвесь остается гомогенной и практически сульфат бария долгое время не оседает;
Использование патентованных отечественных и зарубежных препаратов с различными стабилизирующими веществами, вяжущими средствами, вкусовыми добавками. Среди них заслуживают внимание – баротраст, миксобар, сульфобар и др.
Эффективность двойного контрастирования повышается до 100% при использовании следующей композиции: сульфат бария – 650 г, цитрат натрия – 3,5 г, сорбит – 10,2 гр., антифосмилан – 1,2 г, вода – 100 г.
Взвесь сернокислого бария безвредна. Однако, при попадании в брюшную полость и в дыхательные пути возможны токсические реакции, при стенозах – развитие непроходимости.
К нетрадиционным йоднесодержащим КС относятся магнитные жидкости – ферромагинтные суспензии, которые перемещаются в органах и тканях внешним магнитным полем. В настоящее время имеется ряд композиций на основе ферритов магния, бария, никеля, меди, суспенизрованных в жидком водном носителе, содержащим крахмал, поливиниловый спирт и другие вещества с добавлением пудры металлических окислов бария, висмута и других химических веществ. Изготовлены специальные аппараты с магнитным устройством, способные управлять этими КС.
Считается, что ферромагнитные препараты могут применяться в ангиографии, бронхографии, сальпингографии, гастрографии. Пока широкого распространения этот метод в клинической практике не получил.
В последнее время среди нетрадиционных КС заслуживают внимания биодеградирующие контрастные средства. Это препараты на основе липосом (яичный лецитин, холестерин и др.), депонирующиеся избирательно в различных органах, в частности в клетках РЭС печени и селезенки (йопамидол, метризамид и др.). Синтезированы и бромированные липосомы для КТ, которые выделяются почками. Предложаны КС на основе перфторуглеродистых и других нетрадиционных химических элементов, таких как тантал, вольфрам, молибден. Но об их практическом применении пока говорить рано.
Таким образом, в современной клинической практике используются в основном два класса рентгеновских КС – йодированные и сульфат бария.
Парамагнитные КС для МРТ. Для МРТ в настоящее время широкое распространение в качестве парамагнитного контрастного средства нашел «Магневист». Последний укорачивает время спин-решетчатой релаксации возбужденных ядер атомов, что увеличивает интенсивность сигнала и повышает контрастность изображения тканей. После в/в введения он быстро распределяется во внеклеточном пространстве. Выделяется из организма главным образом почками с помощью клубочковой фильтрации.
Область применения. Применение «Магневиста» показано при исследовании органов ЦНС, с целью обнаружения опухоли, а также для дифференциальной диагностики при подозрении на опухоль мозга, невриному слухового нерва, глиому, метастазы опухолей и др. С помощью «Магневиста» достоверно выявляют степень поражения головного и спинного мозга при рассеянном склерозе и контролируют эффективность проводимого лечения. «Магневист» используют в диагностике и дифференциальной диагностике опухолей спинного мозга, а также для выявления распространенности новообразований. «Магневист» используют и при проведении МРТ всего тела, включая исследование лицевого черепа, области шеи, грудной и брюшной полостей, молочных желез, тазовых органов, опорно-двигательного аппарата.
Для ультразвуковой диагностики в настоящее время созданы и стали доступными принципиально новые КС. Заслуживают внимания «Эховист» и «Левовост». Они представляют собой суспензию микрочастиц галактозы, содержащих пузырьки воздуха. Эти препараты позволяют, в частности, диагностировать заболевания, которые сопровождаются гемодинамическими изменениями в правых отделах сердца.
В настоящее время благодаря широкому использованию рентгеноконтрастных, парамагнитных средств и, используемых при ультразвуковом исследвании, возможности диагностики заболеваний различных органов м систем значительно расширились. Продолжаются исследования по созданию новых КС высокоэффективных и безопасных.