
- •1. Механическое движение. Виды механического движения. Система отсчёта. Скорость. Сложение скоростей в классической и релятивистской механике.
- •Виды механического движения
- •2. Электрическая ёмкость. Конденсаторы. Энергия конденсатора. Применение конденсаторов.
- •2. Электрический ток в газах. Самостоятельный и несамостоятельный газовый разряд. Виды газового разряда, применение. Электрический ток в газах.
- •1. Масса и её измерение. Сила, сложение сил. Второй закон Ньютона. Третий закон Ньютона.
- •2. Электрический ток в растворах и расплавах электролитов. Закон Фарадея. Техническое применение электролиза.
- •2. Получение копий с предметов при помощи электролиза (гальвано¬пластика).
- •3. Рафинирование (очистка) металлов.
- •1. Импульс тела. Закон сохранения импульса. Реактивное движение в природе и технике. Значение работ к.Э.Циолковского для космонавтики.
- •2. Электрический ток в полупроводниках: зависимость сопротивления от внешних условий. Собственная и примесная проводимость полупроводников.
- •1. Закон всемирного тяготения. Сила тяжести. Свободное падение тел. Вес тела. Невесомость.
- •2. Полупроводниковый диод, р-п - переход и его свойства. Применение полупроводниковых приборов.
- •1. Силы упругости. Закон Гука. Деформации, виды упругих деформаций.
- •2. Магнитное поле. Магнитная индукция, линии магнитной индукции. Сила Ампера. Сила Лоренца.
- •1. Работа. Механическая энергия. Кинетическая и потенциальная энергия. Закон сохранения механической энергии.
- •2. Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца.
- •1. Механические колебания. Свободные и вынужденные колебания. Резонанс. Превращение энергии при механических колебаниях.
- •2. Самоиндукция. Индуктивность. Энергия магнитного поля.
- •1. Распространение колебаний в упругой среде. Поперечные и продольные волны. Скорость волны. Длина волны.
- •2. Термоядерная реакция. Перспективы и проблемы развития ядерной энергетики. Борьба России за устранение угрозы ядерной войны.
- •1. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Изопроцессы. Использование свойств газов в технике
- •2. Электромагнитные волны и их свойства. Принцип радиосвязи. Модуляция, детектирование. Изобретение радио, современные средства связи.
- •1. Температура и её измерение. Абсолютная температура. Температура - мера средней кинетической энергии движения молекул.
- •1. Работа в термодинамике. Внутренняя энергия. Первый закон термодинамики. Адиабатный процесс.
- •2. Вынужденные электромагнитные колебания. Генератор переменного тока. Трансформатор. Производство и передача электроэнергии, энергосбережение в быту и на производстве.
- •1. Тепловые двигатели. Кпд тепловых двигателей. Тепловые двигатели и экология.
- •2. Дисперсия света. Спектроскоп, спектрограф.
- •1. Электрический заряд. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения электрического заряда.
- •2. Спектр электромагнитных излучений. Виды излучений, их практическое применение.
- •1. Электрическое поле. Напряжённость электрического поля. Графическое представление электрических полей.
- •2. Законы отражения и преломления света. Полное внутреннее отражение и его применение.
- •1. Непрерывный и линейчатый спектры. Спектр испускания и поглощения. Спектральный анализ и его применение.
- •2. Свободные и вынужденные электромагнитные колебания. Колебательный контур и превращение энергии при электромагнитных колебаниях. Частота и период колебаний.
- •1. Квантовые свойства света. Фотоэлектрический эффект и его законы. Уравнение Эйнштейна для фотоэффекта. Применение фотоэффекта в технике.
- •2. Линзы. Оптическая сила линзы. Формула тонкой линзы. Построение изображения в тонкой линзе.
- •1. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Квантовые постулаты Бора.
- •2. Звуковые волны. Скорость звука. Громкость, высота тона. Ультразвук, применение.
- •1. Состав ядра атома. Изотопы. Ядерные силы. Дефект массы и энергия связи ядра атома.
- •2. Магнитные свойства вещества. Ферромагнетики и их применение
- •1. Цепная ядерная реакция и условия её существования. Ядерный реактор.
- •2. Испарение и конденсация. Насыщенные и ненасыщенные пары. Влажность воздуха и её измерение.
- •1. Радиоактивность. Виды радиоактивных излучений, методы их регистрации. Биологическое действие ионизирующих излучений.
- •2. Кристаллические и аморфные тела. Анизотропия кристаллов.
1. Радиоактивность. Виды радиоактивных излучений, методы их регистрации. Биологическое действие ионизирующих излучений.
Радиоактивность — это испускание ядрами некоторых элементов различных частиц, сопровождающееся переходом ядра в другое состояние и изменением его параметров. Явление радиоактивности было открыто опытным путем французским ученым Анри Беккерелем в 1896 г. для солей урана. Беккерель заметил, что соли урана засвечивают завернутую во много слоев фотобумагу невидимым проникающим излучением.
Английский физик Э. Резерфорд исследовал радиоактивное излучение в электрических и магнитных полях и открыл три составляющие этого излучения, которые были названы а-, B-, у-излучением (рис. 54).
а-Распад представляет собой излучение а-частиц (ядер гелия) высоких энергий. При этом масса ядра уменьшается на 4 единицы, а заряд — на 2 единицы.
B-Распад — излучение электронов, заряд которых возрастает на единицу, массовое число не изменяется.
у-Излучение представляет собой испускание возбужденным ядром квантов света высокой частоты. Параметры ядра при у-излучении не меняются, ядро лишь переходит в состояние с меньшей энергией. Распавшееся ядро тоже радиоактивно, т. е. происходит цепочка последовательных радиоактивных превращений. Процесс распада всех радиоактивных элементов идет до свинца. Свинец — конечный продукт распада.
Приборы, применяемые для регистрации ядерных излучений, называются детекторами ядерных излучений. Наиболее широкое применение получили детекторы, обнаруживающие ядерные излучения по производимой ими ионизации и возбуждению атомов вещества: газоразрядный счетчик Гейгера, камера Вильсона, пузырьковая камера. Существует также метод фотоэмульсий, основанный на способности пролетающей частицы создавать в фотоэмульсии скрытое изображение. След пролетевшей частицы виден на фотографии после проявления.
Радиоактивные излучения оказывают сильное биологическое действие на ткани живого организма, заключающееся в ионизации атомов и молекул среды. Возбужденные атомы и ионы обладают сильной химической активностью, поэтому в клетках организма появляются новые химические соединения, чуждые здоровому организму. Под действием ионизирующей радиации разрушаются сложные молекулы и элементы клеточных структур. В человеческом организме нарушается процесс кроветворения, приводящий к дисбалансу белых и красных кровяных телец. Человек заболевает белокровием, или так называемой лучевой болезнью. Большие дозы облучения приводят к смерти.
2. Кристаллические и аморфные тела. Анизотропия кристаллов.
Аморфные тела и кристаллы. Аморфными называются тела, физические свойства которых одинаковы по всем направлениям. Примерами аморфных тел могут служить куски затвердевшей смолы, янтарь, изделия из стекла. Аморфные тела являются изотропными телами. Изотропность физических свойств аморфных тел объясняется беспорядочностью расположения составляющих их атомов и молекул. Твердые тела, в которых атомы или молекулы расположены упорядоченно и образуют периодически повторяющуюся внутреннюю структуру, называются кристаллами.
Физические свойства кристаллических тел неодинаковы в различных направлениях, но совпадают в параллельных направлениях. Это свойство кристаллов называется анизотропностью. Кристалл поваренной соли при раскалывании дробится на части, ограниченные плоскими поверхностями, пересекающимися под прямыми углами. Эти плоскости перпендикулярны особым направлениям в образце, по этим направлениям его прочность минимальна.
Анизотропия механических, тепловых, электрических и оптических свойств кристаллов объясняется тем, что при упорядоченном расположении атомов, молекул или ионов силы взаимодействия между ними и межатомные расстояния оказываются неодинаковыми по различным направлениям (рис. 98).
Кристаллические тела делятся на монокристаллы и поликристаллы. Монокристаллы иногда обладают геометрически правильной внешней формой, но главный признак монокристалла — периодически повторяющаяся внутренняя структура во всем его объеме. Поликристаллическое тело представляет собой совокупность сросшихся друг с другом хаотически ориентированных маленьких кристаллов — кристаллитов. Поликристаллическую структуру чугуна, например, можно обнаружить, если рассмотреть с помощью лупы образец на изломе. Каждый маленький монокристалл поликристаллического тела анизотропен, но поликристаллическое тело изотропно.
Пространственная решетка. Для наглядного представления внутренней структуры кристалла применяется способ изображения его с помощью пространственной кристаллической решетки. Кристаллической решеткой называется пространственная сетка, узлы которой совпадают с центрами атомов или молекул в кристалле (рис. 99).
Кристаллы могут иметь форму различных призм и пирамид, в основании которых могут лежать только правильный треугольник, квадрат, параллелограмм и шестиугольник (рис. 100).
Представления о периодической структуре кристаллов и симметрии расположения атомов в них в настоящее время имеют строгое экспериментальное подтверждение.
Наглядные картины расположения атомов в кристалле удается получать с помощью электронного микроскопа и ионного проектора