
- •1. Механическое движение. Виды механического движения. Система отсчёта. Скорость. Сложение скоростей в классической и релятивистской механике.
- •Виды механического движения
- •2. Электрическая ёмкость. Конденсаторы. Энергия конденсатора. Применение конденсаторов.
- •2. Электрический ток в газах. Самостоятельный и несамостоятельный газовый разряд. Виды газового разряда, применение. Электрический ток в газах.
- •1. Масса и её измерение. Сила, сложение сил. Второй закон Ньютона. Третий закон Ньютона.
- •2. Электрический ток в растворах и расплавах электролитов. Закон Фарадея. Техническое применение электролиза.
- •2. Получение копий с предметов при помощи электролиза (гальвано¬пластика).
- •3. Рафинирование (очистка) металлов.
- •1. Импульс тела. Закон сохранения импульса. Реактивное движение в природе и технике. Значение работ к.Э.Циолковского для космонавтики.
- •2. Электрический ток в полупроводниках: зависимость сопротивления от внешних условий. Собственная и примесная проводимость полупроводников.
- •1. Закон всемирного тяготения. Сила тяжести. Свободное падение тел. Вес тела. Невесомость.
- •2. Полупроводниковый диод, р-п - переход и его свойства. Применение полупроводниковых приборов.
- •1. Силы упругости. Закон Гука. Деформации, виды упругих деформаций.
- •2. Магнитное поле. Магнитная индукция, линии магнитной индукции. Сила Ампера. Сила Лоренца.
- •1. Работа. Механическая энергия. Кинетическая и потенциальная энергия. Закон сохранения механической энергии.
- •2. Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца.
- •1. Механические колебания. Свободные и вынужденные колебания. Резонанс. Превращение энергии при механических колебаниях.
- •2. Самоиндукция. Индуктивность. Энергия магнитного поля.
- •1. Распространение колебаний в упругой среде. Поперечные и продольные волны. Скорость волны. Длина волны.
- •2. Термоядерная реакция. Перспективы и проблемы развития ядерной энергетики. Борьба России за устранение угрозы ядерной войны.
- •1. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Изопроцессы. Использование свойств газов в технике
- •2. Электромагнитные волны и их свойства. Принцип радиосвязи. Модуляция, детектирование. Изобретение радио, современные средства связи.
- •1. Температура и её измерение. Абсолютная температура. Температура - мера средней кинетической энергии движения молекул.
- •1. Работа в термодинамике. Внутренняя энергия. Первый закон термодинамики. Адиабатный процесс.
- •2. Вынужденные электромагнитные колебания. Генератор переменного тока. Трансформатор. Производство и передача электроэнергии, энергосбережение в быту и на производстве.
- •1. Тепловые двигатели. Кпд тепловых двигателей. Тепловые двигатели и экология.
- •2. Дисперсия света. Спектроскоп, спектрограф.
- •1. Электрический заряд. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения электрического заряда.
- •2. Спектр электромагнитных излучений. Виды излучений, их практическое применение.
- •1. Электрическое поле. Напряжённость электрического поля. Графическое представление электрических полей.
- •2. Законы отражения и преломления света. Полное внутреннее отражение и его применение.
- •1. Непрерывный и линейчатый спектры. Спектр испускания и поглощения. Спектральный анализ и его применение.
- •2. Свободные и вынужденные электромагнитные колебания. Колебательный контур и превращение энергии при электромагнитных колебаниях. Частота и период колебаний.
- •1. Квантовые свойства света. Фотоэлектрический эффект и его законы. Уравнение Эйнштейна для фотоэффекта. Применение фотоэффекта в технике.
- •2. Линзы. Оптическая сила линзы. Формула тонкой линзы. Построение изображения в тонкой линзе.
- •1. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Квантовые постулаты Бора.
- •2. Звуковые волны. Скорость звука. Громкость, высота тона. Ультразвук, применение.
- •1. Состав ядра атома. Изотопы. Ядерные силы. Дефект массы и энергия связи ядра атома.
- •2. Магнитные свойства вещества. Ферромагнетики и их применение
- •1. Цепная ядерная реакция и условия её существования. Ядерный реактор.
- •2. Испарение и конденсация. Насыщенные и ненасыщенные пары. Влажность воздуха и её измерение.
- •1. Радиоактивность. Виды радиоактивных излучений, методы их регистрации. Биологическое действие ионизирующих излучений.
- •2. Кристаллические и аморфные тела. Анизотропия кристаллов.
1. Цепная ядерная реакция и условия её существования. Ядерный реактор.
В 1932 г. английский физик Джеймс Чедвик открыл частицы с нулевым электрическим зарядом и единичной массой. Эти частицы назвали нейтронами. Обозначается нейтрон п. После открытия нейтрона физики Д. Д. Иваненко и В. Гейзенберг в 1932 г. выдвинули протонно-нейтронную модель атомного ядра. Согласно этой модели, ядро атома любого вещества состоит из протонов и нейтронов. (Общее название протонов и нейтронов — нуклоны.) Число протонов равно заряду ядра и совпадает с номером элемента в таблице Менделеева. Сумма числа протонов и нейтронов равна массовому числу. Например, ядро атома кислорода состоит из 8 протонов и 16 - 8 = 8 нейтронов. Ядро атома состоит из 92 протонов и 235 - 92 = 143 нейтронов.
Химические вещества, занимающие одно и то же место в таблице Менделеева, но имеющие разную атомную массу, называются изотопами. Ядра изотопов отличаются числом нейтронов. Например, водород имеет три изотопа: протии — ядро состоит из одного протона, дейтерий — ядро состоит из одного протона и одного нейтрона, тритий — ядро состоит из одного протона и двух нейтронов.
Если сравнить массы ядер с массами нуклонов, то окажется, что масса ядра тяжелых элементов больше суммы масс протонов и нейтронов в ядре, а для легких элементов масса ядра меньше суммы масс протонов и нейтронов в ядре. Следовательно, существует разность масс между массой ядра и суммой масс протонов и нейтронов, называемая дефектом массы. М = Мn — (Мp + Мn).
Так как между массой и энергией существует связь , то при делении тяжелых ядер и при синтезе легких ядер должна выделяться энергия, существующая из-за дефекта масс, и эта энергия называется энергией связи атомного ядра.
Выделение этой энергии может происходить при ядерных реакциях. Ядерная реакция — это процесс изменения заряда ядра и его массы, происходящий при взаимодействии ядра с другими ядрами или элементарными частицами. При протекании ядерных реакций выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (массовых чисел) конечных продуктов (ядер и частиц) реакции.
Цепная реакция деления — это ядерная реакция, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Необходимым условием для развития цепной реакции деления является требование k > 1, где k — коэффициент размножения нейтронов, т. е. отношение числа нейтронов в данном поколении к их числу в предыдущем поколении. Способностью к цепной ядерной реакции обладает изотоп урана 235U. При наличии определенных критических параметров (критическая масса — 50 кг, шаровая форма радиусом 9 см) три нейтрона, выделившиеся при делении первого ядра, попадают в три соседних ядра и т. д. Процесс идет в виде цепной реакции, которая протекает за доли секунды в виде ядерного взрыва. Неуправляемая ядерная реакция применяется в атомных бомбах. Впервые решил задачу об управлении цепной реакцией деления ядер физик Энрико Ферми. Им был изобретен ядерный реактор в 1942 г. У нас в стране реактор был запущен в 1946 г. под руководством И. В. Курчатова.
Термоядерные реакции — это реакции синтеза легких ядер, происходящие при высокой температуре (примерно 107 К и выше). Необходимые условия для синтеза ядер гелия из протонов имеются в недрах звезд. На Земле термоядерная реакция осуществлена только при экспериментальных взрывах, хотя ведутся международные исследования по управлению этой реакцией.
Я́дерный реа́ктор — это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Первый ядерный реактор построен в декабре 1942 года в США под руководством Э. Ферми. В Европе первым ядерным реактором стала установка Ф-1. Она была запущена 25 декабря 1946 года в Москве под руководством И. В. Курчатова.[1]
К 1978 году в мире работало уже около сотни ядерных реакторов различных типов. Составными частями любого ядерного реактора являются: активная зона с ядерным топливом, обычно окруженная отражателем нейтронов, теплоноситель, система регулирования цепной реакции, радиационная защита, система дистанционного управления. Основной характеристикой ядерного реактора является его мощность. Мощность в 1 МВт соответствует цепной реакции, в которой происходит 3×1016 актов деления в 1 сек.