
- •1. Механическое движение. Виды механического движения. Система отсчёта. Скорость. Сложение скоростей в классической и релятивистской механике.
- •Виды механического движения
- •2. Электрическая ёмкость. Конденсаторы. Энергия конденсатора. Применение конденсаторов.
- •2. Электрический ток в газах. Самостоятельный и несамостоятельный газовый разряд. Виды газового разряда, применение. Электрический ток в газах.
- •1. Масса и её измерение. Сила, сложение сил. Второй закон Ньютона. Третий закон Ньютона.
- •2. Электрический ток в растворах и расплавах электролитов. Закон Фарадея. Техническое применение электролиза.
- •2. Получение копий с предметов при помощи электролиза (гальвано¬пластика).
- •3. Рафинирование (очистка) металлов.
- •1. Импульс тела. Закон сохранения импульса. Реактивное движение в природе и технике. Значение работ к.Э.Циолковского для космонавтики.
- •2. Электрический ток в полупроводниках: зависимость сопротивления от внешних условий. Собственная и примесная проводимость полупроводников.
- •1. Закон всемирного тяготения. Сила тяжести. Свободное падение тел. Вес тела. Невесомость.
- •2. Полупроводниковый диод, р-п - переход и его свойства. Применение полупроводниковых приборов.
- •1. Силы упругости. Закон Гука. Деформации, виды упругих деформаций.
- •2. Магнитное поле. Магнитная индукция, линии магнитной индукции. Сила Ампера. Сила Лоренца.
- •1. Работа. Механическая энергия. Кинетическая и потенциальная энергия. Закон сохранения механической энергии.
- •2. Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца.
- •1. Механические колебания. Свободные и вынужденные колебания. Резонанс. Превращение энергии при механических колебаниях.
- •2. Самоиндукция. Индуктивность. Энергия магнитного поля.
- •1. Распространение колебаний в упругой среде. Поперечные и продольные волны. Скорость волны. Длина волны.
- •2. Термоядерная реакция. Перспективы и проблемы развития ядерной энергетики. Борьба России за устранение угрозы ядерной войны.
- •1. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Изопроцессы. Использование свойств газов в технике
- •2. Электромагнитные волны и их свойства. Принцип радиосвязи. Модуляция, детектирование. Изобретение радио, современные средства связи.
- •1. Температура и её измерение. Абсолютная температура. Температура - мера средней кинетической энергии движения молекул.
- •1. Работа в термодинамике. Внутренняя энергия. Первый закон термодинамики. Адиабатный процесс.
- •2. Вынужденные электромагнитные колебания. Генератор переменного тока. Трансформатор. Производство и передача электроэнергии, энергосбережение в быту и на производстве.
- •1. Тепловые двигатели. Кпд тепловых двигателей. Тепловые двигатели и экология.
- •2. Дисперсия света. Спектроскоп, спектрограф.
- •1. Электрический заряд. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения электрического заряда.
- •2. Спектр электромагнитных излучений. Виды излучений, их практическое применение.
- •1. Электрическое поле. Напряжённость электрического поля. Графическое представление электрических полей.
- •2. Законы отражения и преломления света. Полное внутреннее отражение и его применение.
- •1. Непрерывный и линейчатый спектры. Спектр испускания и поглощения. Спектральный анализ и его применение.
- •2. Свободные и вынужденные электромагнитные колебания. Колебательный контур и превращение энергии при электромагнитных колебаниях. Частота и период колебаний.
- •1. Квантовые свойства света. Фотоэлектрический эффект и его законы. Уравнение Эйнштейна для фотоэффекта. Применение фотоэффекта в технике.
- •2. Линзы. Оптическая сила линзы. Формула тонкой линзы. Построение изображения в тонкой линзе.
- •1. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Квантовые постулаты Бора.
- •2. Звуковые волны. Скорость звука. Громкость, высота тона. Ультразвук, применение.
- •1. Состав ядра атома. Изотопы. Ядерные силы. Дефект массы и энергия связи ядра атома.
- •2. Магнитные свойства вещества. Ферромагнетики и их применение
- •1. Цепная ядерная реакция и условия её существования. Ядерный реактор.
- •2. Испарение и конденсация. Насыщенные и ненасыщенные пары. Влажность воздуха и её измерение.
- •1. Радиоактивность. Виды радиоактивных излучений, методы их регистрации. Биологическое действие ионизирующих излучений.
- •2. Кристаллические и аморфные тела. Анизотропия кристаллов.
2. Линзы. Оптическая сила линзы. Формула тонкой линзы. Построение изображения в тонкой линзе.
Линза (нем. Linse, от лат. lens — чечевица) — деталь из оптически прозрачного однородного материала, ограниченная двумя полированными преломляющими поверхностями вращения, например, сферическими или плоской и сферической. В настоящее время всё чаще применяются и «асферические линзы», форма поверхности которых отличается от сферы. В качестве материала линз обычно используются оптические материалы, такие как стекло, оптическое стекло, оптически прозрачные пластмассы и другие материалы.
Линзами также называют и другие оптические приборы и явления, которые создают сходный оптический эффект, не обладая указанными внешними характеристиками. Например:
• Плоские «линзы», изготовленные из материала с переменным коэффициентом преломления, изменяющимся в зависимости от расстояния от центра
• линзы Френеля
• зонная пластинка Френеля, использующая явление дифракции
• «линзы» воздуха в атмосфере — неоднородность свойств, в частности, коэффициента преломления (проявляются в виде мерцания изображения звёзд в ночном небе).
• Гравитационная линза — наблюдаемый на межгалактических расстояниях эффект отклонения электромагнитных волн массивными объектами.
• Магнитная линза — устройство, использующее постоянное магнитное поле для фокусирования пучка заряженных частиц (ионов или электронов) и применяющееся в электронных и ионных микроскопах.
• Изображение линзы, сформированное оптической системой или частью оптической системы. Используется при расчёте сложных оптических систем.
Оптическая сила линзы - величина, обратная фокусному расстоянию линзы.
Оптическая сила линзы = 1 / Фокусное расстояние
Оптическая сила, двух соприкасающихся тонких линз, равна сумме их оптических сил.
Формула тонкой линзы - соотношение, связывающее:
- оптическую силу линзы (F);
- с расстоянием от оптического центра линзы до предмета (d); и
- с расстоянием от оптического центра линзы до изображения предмета(f).
1/F = 1/d + 1/f
Построение изображения тонкой собирающей линзой
При изложении характеристики линз был рассмотрен принцип построения изображения светящейся точки в фокусе линзы. Лучи, падающие на линзу слева, проходят через её задний фокус, а падающие справа — через передний фокус. Следует учесть, что у рассеивающих линз, наоборот, задний фокус расположен спереди линзы, а передний позади.
Построение линзой изображения предметов, имеющих определённую форму и размеры, получается следующим образом: допустим, линия AB представляет собой объект, находящийся на некотором расстоянии от линзы, значительно превышающем её фокусное расстояние. От каждой точки предмета через линзу пройдёт бесчисленное количество лучей, из которых, для наглядности, на рисунке схематически изображён ход только трёх лучей.
Три луча, исходящие из точки A, пройдут через линзу и пересекутся с соответствующих точках схода на A1B1, образуя изображение. Полученное изображение является действительным и перевёрнутым.
В данном случае изображение получено в сопряжённом фокусе в некоторой фокальной плоскости FF, несколько удалённой от главной фокальной плоскости F’F’, проходящей параллельно ей через главный фокус.
Далее приведены различные случаи построения изображений предмета, помещённого на различных расстояниях от линзы.
Если предмет находится на бесконечно далёком от линзы расстоянии, то его изображение получается в заднем фокусе линзы F’ действительным, перевёрнутым и уменьшенным до подобия точки.
Если предмет приближён к линзе и находится на расстоянии, превышающем двойное фокусное расстояние линзы, то изображение его будет действительным, перевёрнутым и уменьшенным и расположится за главным фокусом на отрезке между ним и двойным фокусным расстоянием.
Если предмет помещён на двойном фокусном расстоянии от линзы, то полученное изображение находится по другую сторону линзы на двойном фокусном расстоянии от неё. Изображение получается действительным, перевёрнутым и равным по величине предмету.
Если предмет помещён между передним фокусом и двойным фокусным расстоянием, то изображение будет получено за двойным фокусным расстоянием и будет действительным, перевёрнутым и увеличенным.
Если предмет находится в плоскости переднего главного фокуса линзы, то лучи, пройдя через линзу, пойдут параллельно, и изображение может получиться лишь в бесконечности.
Если предмет поместить на расстоянии, меньшем главного фокусного расстояния, то лучи выйдут из линзы расходящимся пучком, нигде не пересекаясь. Изображение при этом получается мнимое, прямое и увеличенное, т. е. в данном случае линза работает как лупа.
Нетрудно заметить, что при приближении предмета из бесконечности к переднему фокусу линзы изображение удаляется от заднего фокуса и по достижении предметом плоскости переднего фокуса оказывается в бесконечности от него.
Эта закономерность имеет большое значение в практике различных видов фотографических работ, поэтому для определения зависимости между расстоянием от предмета до линзы и от линзы до плоскости изображения необходимо знать основную формулу линзы.
Билет 20