
- •Rotor Dynamic Calculation Procedures for Electromagnetic and Auxiliary Bearings pra-0061
- •Leaktight Step Motor Development pra-0062
- •Safety Rods Drive Mechanisms for Fast Sodium-Cooled Reactors pra-0063
- •Parametric Range of Leak-Tight Pumps pra-0064
- •High-Temperature Chromic Steel for Nuclear Reactor Vessels pra-0066
- •Automated Pilot Plant for Fermentation pra-0067
- •Automated Commercial Plant for Molecular Distillation pra-0068
- •Floating nuclear power plant pra-0069
- •Nuclear Floating Plant for Drinking Water Production pra-0070
- •Regularities of Weak Gravitational Interactions pra-0071
- •Ecr Sources of Soft X-ray Emissions pra-0072
- •Pulse-Repetition in the yag:Nd Laser System as a Source of Soft X-rays pra-0073
- •Application of Nonlinear Acoustic Methods in Nondestruction Testing and Seismology pra-0074
- •Self-Adaptive Solid-State Lasers Formed by Population Inversion Gratings pra-0075
- •Highly-Charged Ions in the ecr Discharge Sustained by Millimeter-Wave Radiation pra-0076
- •Atmospheric Spectroscopy Distance in the ir Range up to 10 Kilometers pra-0077
- •New Approach to 3d Optical Memory pra-0079
- •Generation of Subnanosecond Millimeter-Wave Pulse Based on Superradiance pra-0080
- •Compact Optical Gyroscopes pra-0082
- •High-Precision Material Processing by Femtosecond Laser pra-0083
- •Eximer Laser pra-0084
- •Optical Coherence Tomography of Human Biotissues pra-0085
- •Optical Diamond Microturning of Crystals for Lasers pra-0086
- •Measurement and Perception in “Man-Machine” Systems pra-0087
- •Effective Plasma Radiators for Satellite-Based Geological Prospecting pra-0088
- •Metal Materials Behavior During Complex Dynamic Loading pra-0090
- •Magnetic Field Sensor Matrix pra-0091
- •Effective control of metal materials structure pra-0092
- •Structure Control of Aluminum Alloys by Means of Heat Time Melt Treatment pra-0093
- •Diamond-Like, Carbon Coated Magnetic Heads for Recording and Reading Information pra-0094
- •Technology for the Information Readout with Submicron Spatial Resolution pra-0095
- •Deposition of Diamond-Like Nitride and Carbide Coatings pra-0096
- •Quartz Fiber Calorimetry pra-0097
- •Electric Discharge in Water with a Low Pulse Energyfor Purifying Water pra-0098
- •Inertial Energy Storage for High-Speed and Short-Time Electrical Supply pra-0099
- •Investigation of Strength Limit and Synthesis of Materials with the Help of Hypersoniclaunchers pra-0100
- •Powerful Low Temperature Hydrogen Plasma Generator pra-0101
- •Application of Electrical Current Pulses with a Magnitude of up to 10 ma pra-0102
- •Photodynamics in Thin-Layered Structures of Laser Beam Limiters pra-0103
- •Nonlinear Optical Analogous Correction In Imaging Telescopes pra-0104
- •Laser Collimeter with Phase Conjugation pra-0105
- •Novel Solid-State Laser Based on Barium Nitrate Cristal pra-0106
- •New Technologies for High-Power Eye-Safe Lasers pra-0107
- •Optical Scheme for a Laser-Robot pra-0108
- •Laser Cleaning of Water Surface from Hydrocarbon Pollutants pra-0020
- •500 W Excimer Laser for Industrial Applications pra-0021
Magnetic Field Sensor Matrix pra-0091
Full Title Magnetic Field Sensor Matrix Tech Area / Field
INF-SIG: Information and Communications / Sensors and Signal Processing
PHY-SSP: Physics / Solid State Physics
INS-DET: Instrumentation / Detection Devices
Brief Description of Technology The principle of building a magnetic field sensor based on reluctant anisotropy in thin ferromagnetic film has been developed. This principle will be used in producing a magnetic sensor matrix with sensitive elements with of the dimensions, 1 1 0.1 microns. The sensor matrix works with stability in the range of fields between 0.001 and 1000 a/sm. The number of sensitive elements may be up to 1024. The particularity of this sensor concerns the possibility of measuring two orthogonal components of a magnetic field without additional spatial movement (while magnetic field measuring sensor is immovable).
Legal Aspects An experimental sample of a sensor with 256 elements has been produced by mask technology. The magnetically sensitive elements measured 400 100 0.1 microns. It is necessary to use higher technology for producing sensors with elements of micron dimensions. There is no necessity to change the sensor design, however. Experimental sensors are successfully used for the visualization of magnetic field leakage and micron-sized defects in magnetic defectoscopy. The application for a patent for the design of the matrix-sensor has been approved in Russia.
Special Facilities in Use and Their Specifications None.
Scientific Papers V.E. Scherbinin, A.S. Shleenkov, "Multi-Element Transducer-Aided Magnetic Monitoring of Welded Seams,” Condition Monitoring and Diagnostic Technology, Vol. 2., No. 3, pp.91-95 (1992).
Effective control of metal materials structure pra-0092
Full Title Effective Control of Metal Materials Structure by Influence of Excess Pressure on the Mobility of a Crystal-Melt Interface Tech Area / Field
MAT-ALL: Materials / High Performance Metals and Alloys
MAN-MAT: Manufacturing Technology / Engineering Materials
PHY-STM: Physics / Structural Mechanics
Description of Technology For the past of five years we have been studying the effects of excess pressures on crystal-melt phase transformation in metals. It has been a newly-discovered phenomenon: the extreme decrease of structure defects density of crystals grown from a melt under excess pressure of an inert gas in a crystallizer chamber. It has been found that, under optimal pressure values (depending upon the crystallographic orientation and the advance rate of crystal-melt interface), the impurity content and the dislocation density in the single crystals decrease greatly (by one and two orders of magnitude, respectively).
Theoretical analysis of experimental results allows us to assume that crystal-melt interface is able to become supermobile at the phase transformation and determines the conditions of the disappearance of thermodynamic and kinetic barriers for the interface motion in a condensed system. [Abstracts of the Tenth International Conference on Crystal Growth. (San-Diego, CA, USA), p. A154, p. D139 (1992)]. Also documented are the effects of excess pressure on dendritic morphology, the kinetic growth of crystals and pressure impulses during solidification of the melt on the grain sizes in an ingot and the cast structure of metal alloys. [Fizika Metallov i Metallovedenie, V.75, pp. 96-102 (1993)]. The results obtained point to a conclusion that low excess pressure is a parameter that permits effective control of the melt solidification process.
In the Crystal Growth Laboratory IMF, new methods were developed regulating solute concentration and structure defects density in single crystals grown from a melt for the effective refinement of materials, the growth of a single crystal, the regulation of dendritic structure alloys, the intensification of crystallization centers nucleation and the decrease of grain sizes in an ingot.
Legal Aspects The experimental results of the use of the method of regulation of dendritic structure of monocrystals of alloys by application of excess pressure on the crystallizing melt was approved by US Laboratories; the report was included in a volume for perspective commercial customers. Patent applications have been approved in Russia for methods of effective control of metal materials structure by influence of excess pressure on the mobility of a crystal-melt interface.
Special Facilities in Use and Their Specifications None.
Scientific Papers V.O.Esin, "Supermobility of Crystal-Melt Interface," ICCG-10. Abstracts from the Tenth International Conference on Crystal Growth. (San-Diego, USA), A154 (1992).
V.O.Esin, A.S.Krivonosova, I.Zh.Sattybaev, T.G.Fedorova, "Extreme Decrease of the Dislocation Density of Al Crystals Grown from the Melt under Pressure," Ibid, D139.
V.O.Esin, A.S.Krivonosova, I.Zh.Sattybaev, T.G.Fedorova, "Effect of Low Excess Pressure Impulses during Melt Solidification on Aluminum Alloys Structure," The Physics of Metals and Metallography, Vol. 75, No. 5, pp. 531-535 (1993).
V.O.Esin, A.S.Krivonosova, I.Zh.Sattybaev, T.G.Fedorova, "Effect of Pressure on the Efficiency of Aluminum Refinement at the Directed Crystallization of Melt," Visokochistie Veschestva, No. 1, pp. 71-76 (1995).