
- •Часть 2
- •Предисловие
- •Глава 9. Методы цифровой фотограмметрии
- •1. Понятие о цифровом изображении
- •2. Характеристики цифрового изображения
- •3. Фотометрические и геометрические преобразования
- •4. Источники цифровых изображений
- •5. Стереоскопические наблюдения и измерения
- •6. Автоматическая идентификация точек
- •7. Фотограмметрическая обработка
- •1 . Внутреннее ориентирование снимков
- •2. Выбор точек и построение
- •3. Построение и уравнивание фототриангуляционной сети
- •8. Цифровая модель рельефа и ее построение
- •1. Способы представления цифровой модели рельефа
- •2. Фотограмметрическая технология построения цифровой модели рельефа
- •9. Ортотрансформирование снимков
- •2. Наблюдение и измерение цифровых изображений
- •3.Внутреннее ориентирование снимка в системе координат цифрового изображения
- •4. Создания цифровых трансформированных изображений.
- •5. Создание цифровых фотопланов.
- •6. Оценка точности цифровых трансформированных
- •10. Современные цифровые фотограмметрические
- •Контрольные вопросы
- •Глава 10. Методы инерциальной и спутниковой навигации
- •1. Координатные системы, используемые в инерциальной и спутниковой навигации
- •2. Инерциальные навигационные системы
- •1. Общие принципы инерциальной навигации
- •2. Базовые элементы инерциальных навигационных приборов
- •3. Инерциальные измерительные блоки
- •4. Обработка инерциальных данных
- •3. Спутниковые навигационные системы
- •1. Действующие и разрабатываемые снс
- •2. Основные компоненты снс
- •Орбитальная группировка
- •Наземный сегмент
- •Аппаратура пользователя
- •Дифференциальная подсистема (дпс)
- •3. Навигационные сигналы gps, глонасс и Galileo
- •Счет времени
- •Координатное обеспечение
- •Навигационные сигналы
- •4. Содержание и точность спутниковых измерений
- •5. Постоянно действующие и временные базовые станции
- •4. Интеграция инерциальных и спутниковых систем
- •1. Достоинства и недостатки навигационных систем
- •2. Фильтр Калмана
- •3. Элементы модели интеграции инс и снс
- •5. Опыт эксплуатации интегрированных навигационных систем при изысканиях
- •Контрольные вопросы
- •Глава 11. Метод аэрогеодезических работ
- •На основе
- •Воздушной лазерной локации
- •И цифровой аэрофотосъёмки
- •1. Принципиальные отличия и сфера применения метода
- •Этапы технологии выполнения
- •Лазерно-локационные и аэрофотосъемочные работы, выполняемые в ходе полевого обследования
- •1. Установка и наладка оборудования на борту
- •2. Геодезическое обеспечение аэросъемочных работ.
- •3. Производство измерений на борту
- •4. Контроль отсутствия пропусков в данных и требуемой
- •5. Вычисление траекторий и определение точности
- •6. Обработка комплексных данных лазерного сканирования.
- •7. Тематическая обработка
- •8. Обработка цифровых фотоснимков
- •3. Программный комплекс altexis
- •4. Основные возможности воздушных сканеров altm
- •Основные технические параметры
- •Общие параметры
- •Перечень программного обеспечения Программное обеспечение Назначение
- •Инструментальные средства лазерной локации
- •6. Лазерное сканирование и цифровая
- •Контрольные вопросы
- •Глава 12. Системы наземного мобильного лазерного сканирования
- •Особенности и преимущества наземных
- •2. Состав и отличие наземных мобильных
- •Системы мобильного картографирования от Topcon
- •Контрольные вопросы
- •Глава 13. Геоинформационное обеспечение территории города
- •1. Создание единого поля координатно-временной
- •2. Аэрофотосъемка со спутниковой навигацией и лазерным сканированием городской территории.
- •3. Создание планово-картографического материала
- •Концепция 3Dimage xyzrgb
- •Контрольные вопросы
- •Глава 14. Беспилотники – перспективное
- •2. Комплекс по производству цифровой аэрофотосъемки
- •Блок-схема технологии создания цифровых топографических планов по материалам афс и влс
- •Библиографический список
- •Глава 9. Методы цифровой фотограмметрии…………….....4
- •Глава 10. Методы инерциальной и
- •Глава 11. Метод аэрогеодезических работ на
- •Глава 12. Системы наземного мобильного
- •Глава 13. Геоинформационное обеспечение
- •Глава 14. Беспилотники – перспективное средство
- •Приложение № 1 Блок-схема технологического процесса создания
3. Построение и уравнивание фототриангуляционной сети
Построение фототриангуляционной сети в пределах маршрута или блока выполняется в автоматическом режиме с использованием рассмотренных ранее методов. Задача оператора на этом этапе фотограмметрической обработки сводится к выбору методы уравнивания (независимые или полузависимые модели, уравнивание маршрутов, подблоков, связок проектирующих лучей и т. п.), а также определению критериев для подготавливаемого программой отчета. Критерием качества построения и уравнивания фотограмметрической сети служат величины расхождений исходных и найденных по результатам уравнивания координат, которые не должны превышать:
для опорных точек, по которым выполнено внешнее ориентирование – 0,2 мм в масштабе создаваемого плана в плановом положении и 0,15 сечения рельефа по высоте;
для контрольных опорных точек – не более 0,3 мм в масштабе создаваемого плана и 0,1–0,25 м по высоте при сечении рельефа 0,5–1,0 м;
связующих точек смежных маршрутов – не более 0,5 мм в масштабе создаваемого плана (карты).
Надежность уравнивания фотограмметрического блока повышается, если число использованных опорных точек в полтора – два раза превышает минимально необходимое.
При этом наиболее достоверную оценку получают по контрольным опорным точкам, координаты которых использовались при уравнивании. Важно, чтобы эти точки располагались в наиболее слабых местах фототриангуляционной сети, примерно по середине между опорными точками, по которым выполнялось уравнивание.
Окончательное уравнивание фототриангуляционных сетей часто выполняют с помощью специализированных программ типа ORIMA, в которых реализованы более строгие алгоритмы обработки, а также имеются широкие графические и статистические возможности диагностики ошибок. Поэтому обработка аэроснимков средствами цифровых фотограмметрических систем зачастую ограничивается измерением координат и параллаксов точек, исключением грубых ошибок и экспортом результатов измерений снимков в эти специализированные программы.
Другие виды фотограмметрической обработки цифровых изображений связаны с получением той или иной выходной продукции – фотоплана (ортофотоплана), оригинала рельефа, векторной цифровой модели местности, фотокарт и т. д. Некоторые из них, непосредственно связанные с фотограмметрической обработкой данных, рассмотрены ниже.
8. Цифровая модель рельефа и ее построение
Для преобразования снимка в план, изготовления ортофотоплана, создания оригинала топографической карты, решения других задач необходимы сведения о рельефе местности, получение которых требует определения координат и высот большого числа точек измерения их координат, параллаксов и последующего вычисления пространственных координат. Именно такое решение используется при обработке фотоснимков с помощью аналоговых и аналитических стереофотограмметрических приборов.
Автоматизация технологических процессов, ставшая реальной с применением аналитических методов обработки цифровых изображений, требует применения более общего подхода к решению названных выше задач, основанного на математическом моделировании процессов. Реализация такого подхода требует создания модели обрабатываемой территории, и в частности модели рельефа.