
- •Часть 2
- •Предисловие
- •Глава 9. Методы цифровой фотограмметрии
- •1. Понятие о цифровом изображении
- •2. Характеристики цифрового изображения
- •3. Фотометрические и геометрические преобразования
- •4. Источники цифровых изображений
- •5. Стереоскопические наблюдения и измерения
- •6. Автоматическая идентификация точек
- •7. Фотограмметрическая обработка
- •1 . Внутреннее ориентирование снимков
- •2. Выбор точек и построение
- •3. Построение и уравнивание фототриангуляционной сети
- •8. Цифровая модель рельефа и ее построение
- •1. Способы представления цифровой модели рельефа
- •2. Фотограмметрическая технология построения цифровой модели рельефа
- •9. Ортотрансформирование снимков
- •2. Наблюдение и измерение цифровых изображений
- •3.Внутреннее ориентирование снимка в системе координат цифрового изображения
- •4. Создания цифровых трансформированных изображений.
- •5. Создание цифровых фотопланов.
- •6. Оценка точности цифровых трансформированных
- •10. Современные цифровые фотограмметрические
- •Контрольные вопросы
- •Глава 10. Методы инерциальной и спутниковой навигации
- •1. Координатные системы, используемые в инерциальной и спутниковой навигации
- •2. Инерциальные навигационные системы
- •1. Общие принципы инерциальной навигации
- •2. Базовые элементы инерциальных навигационных приборов
- •3. Инерциальные измерительные блоки
- •4. Обработка инерциальных данных
- •3. Спутниковые навигационные системы
- •1. Действующие и разрабатываемые снс
- •2. Основные компоненты снс
- •Орбитальная группировка
- •Наземный сегмент
- •Аппаратура пользователя
- •Дифференциальная подсистема (дпс)
- •3. Навигационные сигналы gps, глонасс и Galileo
- •Счет времени
- •Координатное обеспечение
- •Навигационные сигналы
- •4. Содержание и точность спутниковых измерений
- •5. Постоянно действующие и временные базовые станции
- •4. Интеграция инерциальных и спутниковых систем
- •1. Достоинства и недостатки навигационных систем
- •2. Фильтр Калмана
- •3. Элементы модели интеграции инс и снс
- •5. Опыт эксплуатации интегрированных навигационных систем при изысканиях
- •Контрольные вопросы
- •Глава 11. Метод аэрогеодезических работ
- •На основе
- •Воздушной лазерной локации
- •И цифровой аэрофотосъёмки
- •1. Принципиальные отличия и сфера применения метода
- •Этапы технологии выполнения
- •Лазерно-локационные и аэрофотосъемочные работы, выполняемые в ходе полевого обследования
- •1. Установка и наладка оборудования на борту
- •2. Геодезическое обеспечение аэросъемочных работ.
- •3. Производство измерений на борту
- •4. Контроль отсутствия пропусков в данных и требуемой
- •5. Вычисление траекторий и определение точности
- •6. Обработка комплексных данных лазерного сканирования.
- •7. Тематическая обработка
- •8. Обработка цифровых фотоснимков
- •3. Программный комплекс altexis
- •4. Основные возможности воздушных сканеров altm
- •Основные технические параметры
- •Общие параметры
- •Перечень программного обеспечения Программное обеспечение Назначение
- •Инструментальные средства лазерной локации
- •6. Лазерное сканирование и цифровая
- •Контрольные вопросы
- •Глава 12. Системы наземного мобильного лазерного сканирования
- •Особенности и преимущества наземных
- •2. Состав и отличие наземных мобильных
- •Системы мобильного картографирования от Topcon
- •Контрольные вопросы
- •Глава 13. Геоинформационное обеспечение территории города
- •1. Создание единого поля координатно-временной
- •2. Аэрофотосъемка со спутниковой навигацией и лазерным сканированием городской территории.
- •3. Создание планово-картографического материала
- •Концепция 3Dimage xyzrgb
- •Контрольные вопросы
- •Глава 14. Беспилотники – перспективное
- •2. Комплекс по производству цифровой аэрофотосъемки
- •Блок-схема технологии создания цифровых топографических планов по материалам афс и влс
- •Библиографический список
- •Глава 9. Методы цифровой фотограмметрии…………….....4
- •Глава 10. Методы инерциальной и
- •Глава 11. Метод аэрогеодезических работ на
- •Глава 12. Системы наземного мобильного
- •Глава 13. Геоинформационное обеспечение
- •Глава 14. Беспилотники – перспективное средство
- •Приложение № 1 Блок-схема технологического процесса создания
2. Выбор точек и построение
фотограмметрических моделей
Последующая фотограмметрическая обработка снимков включает:
перенос на изображения опорных точек с известными координатами X, Y, Z в системе местности;
ввод элементов внешнего ориентирования снимков XS, YS, ZS, , , (при их наличии);
выбор связующих точек в зоне поперечного перекрытия, необходимых для связи смежных маршрутов;
выбор связующих точек в зоне тройного продольного перекрытия, используемых для связи смежных моделей маршрута;
выбор точек для подписи на карте высот, урезов вод и др., в соответствии с требованиями действующих нормативных документов;
выбор дополнительных точек в шести стандартных зонах для повышения точности взаимного ориентирования и соединения смежных моделей.
Все точки, положение которых не может быть произвольным (опорные, связующие, урезы вод и др.), наносят только на один снимок; перенос их на другие снимки того же или смежного маршрута выполняют либо в стереорежиме, либо с помощью коррелятора.
Точки, положение которых на снимке не является жестким (например, дополнительные точки в стандартных зонах для определения элементов взаимного ориентирования, или в зонах тройного продольного перекрытия для связи смежных моделей) могут быть нанесены на снимки автоматически, по заданному размеру стандартной зоны и число точек в ней.
Настройка параметров коррелятора является одним из важных элементом фотограмметрической обработки. При этом определяют размер корреляционной матрицы (образа), возможность его автоматической подстройки при малом числе контуров, а также геометрической коррекции положения искомой точки в случае рельефной местности. Контроль работы коррелятора в стереорежиме является обязательным элементом фотограмметрической обработки любых снимков, поскольку качество отождествления точек определяет качество выполнения всех последующих операций.
Номера столбцов (iX) и строк (iY) пикселов растра с намеченными точками преобразуются в линейные координаты в системе oPxPyP, а затем – по формулам 10 и параметрам аффинного преобразования – в систему координат плоскости прикладной рамки аэрокамеры oxy (рис. 9.12) и исправляются поправками, учитывающими влияние:
кривизны Земли и атмосферной рефракции;
дисторсии объектива съемочной камеры путем интерполяции соответствующих величин по точкам ее определения или применением соответствующего полинома;
искажений сканера интерполяцией поправок по данным поля его искажений или по полиномам;
После выбора точек выполняют взаимное ориентирование снимков строгим способом, с применением метода наименьших квадратов. Критерием качества отождествления точек на смежных снимках является среднее квадратическое значение остаточного поперечного параллакса, величина которого не может превышать 10 мкм. Более значительные расхождения свидетельствуют о наличии ошибок, прежде всего, в отождествлении точек. Их устранение требует проверки качества отождествления и измерения точек в стереорежиме. Менее вероятны ошибки внутреннего ориентирования изображений и паспортных данных съемочной камеры (фокусного расстояния, координат главной точки и др.).
Для повышения точности взаимного ориентирования и надежности определения неизвестных в каждой стандартной зоне намечают по две – четыре точки (желательно контурных, надежность измерения которых несколько выше); часть таких точек должна располагаться в зонах тройного продольного и поперечного перекрытий. Важным условием достижения оптимальной точности взаимного ориентирования является одинаковое число точек в стандартных зонах.
Перечисленные операции завершаются построением одиночной модели и подориентированием ее к предыдущей или к последующей. Полученные при этом разности координат связующих точек смежных моделей маршрута позволяют судить о качестве их измерения и отождествления. Величины таких расхождений не должны превышать 15 мкм в плане и 15(f/b) мкм по высоте.