
- •Часть 2
- •Предисловие
- •Глава 9. Методы цифровой фотограмметрии
- •1. Понятие о цифровом изображении
- •2. Характеристики цифрового изображения
- •3. Фотометрические и геометрические преобразования
- •4. Источники цифровых изображений
- •5. Стереоскопические наблюдения и измерения
- •6. Автоматическая идентификация точек
- •7. Фотограмметрическая обработка
- •1 . Внутреннее ориентирование снимков
- •2. Выбор точек и построение
- •3. Построение и уравнивание фототриангуляционной сети
- •8. Цифровая модель рельефа и ее построение
- •1. Способы представления цифровой модели рельефа
- •2. Фотограмметрическая технология построения цифровой модели рельефа
- •9. Ортотрансформирование снимков
- •2. Наблюдение и измерение цифровых изображений
- •3.Внутреннее ориентирование снимка в системе координат цифрового изображения
- •4. Создания цифровых трансформированных изображений.
- •5. Создание цифровых фотопланов.
- •6. Оценка точности цифровых трансформированных
- •10. Современные цифровые фотограмметрические
- •Контрольные вопросы
- •Глава 10. Методы инерциальной и спутниковой навигации
- •1. Координатные системы, используемые в инерциальной и спутниковой навигации
- •2. Инерциальные навигационные системы
- •1. Общие принципы инерциальной навигации
- •2. Базовые элементы инерциальных навигационных приборов
- •3. Инерциальные измерительные блоки
- •4. Обработка инерциальных данных
- •3. Спутниковые навигационные системы
- •1. Действующие и разрабатываемые снс
- •2. Основные компоненты снс
- •Орбитальная группировка
- •Наземный сегмент
- •Аппаратура пользователя
- •Дифференциальная подсистема (дпс)
- •3. Навигационные сигналы gps, глонасс и Galileo
- •Счет времени
- •Координатное обеспечение
- •Навигационные сигналы
- •4. Содержание и точность спутниковых измерений
- •5. Постоянно действующие и временные базовые станции
- •4. Интеграция инерциальных и спутниковых систем
- •1. Достоинства и недостатки навигационных систем
- •2. Фильтр Калмана
- •3. Элементы модели интеграции инс и снс
- •5. Опыт эксплуатации интегрированных навигационных систем при изысканиях
- •Контрольные вопросы
- •Глава 11. Метод аэрогеодезических работ
- •На основе
- •Воздушной лазерной локации
- •И цифровой аэрофотосъёмки
- •1. Принципиальные отличия и сфера применения метода
- •Этапы технологии выполнения
- •Лазерно-локационные и аэрофотосъемочные работы, выполняемые в ходе полевого обследования
- •1. Установка и наладка оборудования на борту
- •2. Геодезическое обеспечение аэросъемочных работ.
- •3. Производство измерений на борту
- •4. Контроль отсутствия пропусков в данных и требуемой
- •5. Вычисление траекторий и определение точности
- •6. Обработка комплексных данных лазерного сканирования.
- •7. Тематическая обработка
- •8. Обработка цифровых фотоснимков
- •3. Программный комплекс altexis
- •4. Основные возможности воздушных сканеров altm
- •Основные технические параметры
- •Общие параметры
- •Перечень программного обеспечения Программное обеспечение Назначение
- •Инструментальные средства лазерной локации
- •6. Лазерное сканирование и цифровая
- •Контрольные вопросы
- •Глава 12. Системы наземного мобильного лазерного сканирования
- •Особенности и преимущества наземных
- •2. Состав и отличие наземных мобильных
- •Системы мобильного картографирования от Topcon
- •Контрольные вопросы
- •Глава 13. Геоинформационное обеспечение территории города
- •1. Создание единого поля координатно-временной
- •2. Аэрофотосъемка со спутниковой навигацией и лазерным сканированием городской территории.
- •3. Создание планово-картографического материала
- •Концепция 3Dimage xyzrgb
- •Контрольные вопросы
- •Глава 14. Беспилотники – перспективное
- •2. Комплекс по производству цифровой аэрофотосъемки
- •Блок-схема технологии создания цифровых топографических планов по материалам афс и влс
- •Библиографический список
- •Глава 9. Методы цифровой фотограмметрии…………….....4
- •Глава 10. Методы инерциальной и
- •Глава 11. Метод аэрогеодезических работ на
- •Глава 12. Системы наземного мобильного
- •Глава 13. Геоинформационное обеспечение
- •Глава 14. Беспилотники – перспективное средство
- •Приложение № 1 Блок-схема технологического процесса создания
4. Источники цифровых изображений
Цифровые изображения получают двумя способами, один из которых предполагает сканирование аналоговых фотоснимков (аэронегативов), полученных в процессе аэрофотосъемки, а второй – использование цифровых съемочных систем (сенсоров) непосредственно в процессе съемки. В обоих случаях цифровое изображение формируется с помощью либо фотодиодов, либо приемников с зарядовой связью (ПЗС) в форме ПЗС-матрицы или ПЗС-линейки с примерно одинаковыми техническими возможностями. Применение ПЗС-матрицы предполагает формирование всего кадра изображения по схеме, аналогичной фотокамере, где в фокальной плоскости вместо фотопленки располагается ПЗС-матрица. Применение ПЗС-линейки предполагает сканирование местности или изображения параллельными маршрутами с шагом, равным размеру элемента геометрического разрешения.
Сканирование фотоснимков выполняется с помощью оптико-электронных приборов – сканеров, которые по принципу исполнения можно разделить на роликовые, планшетные и барабанные, а по точности и назначению – на офисные и фотограмметрические.
Роликовые сканеры имеют малый формат, неподвижную считывающую головку и низкую точность. Планшетные сканеры – более точные, но низкоскоростные; столбцы и строки изображения задаются перемещениями источника света и считывающей головки. Барабанные сканеры не без оснований считаются наиболее точными; строки формируемого изображения задаются вращением барабана, а столбцы – перемещением считывающей головки.
Офисные сканеры характеризуются относительно низким геометрическим разрешением (от 10 мкм с использованием фотодиодов до 100 мкм на основе ПЗС-линеек), существенными геометрическими ошибками положения элементов растра и используются для сканирования фотоснимков только в исключительных случаях.
Фотограмметрические сканеры характеризуются высоким геометрическим разрешением (не менее 10 мкм при использовании ПЗС-матриц и ПЗС-линеек) и высокой геометрической точностью, определяемой величиной ошибки сканирования и повторяемостью (изменением ошибки). С их помощью можно сканировать черно-белые (штриховые) или цветные снимки. Технические характеристики некоторых наиболее распространенных фотограмметрических сканеров приведены в табл. 9.2; наличие 24-х уровней квантования обеспечивает получение цветного изображения (3 канала по 8 бит).
Таблица 9.2 |
||||
Наименование Характеристики |
Характеристика фотограмметрического сканера |
|||
|
ОАО «Пеленг», РБ |
«Дельта», Украина |
СКФ-11. Россия |
DSW500 LH System |
Размер снимка, мм |
300400 |
300450 |
300300 |
260260 |
Размер пиксела, мкм |
5 |
8 – 128 |
8 |
9 |
Ошибка сканирования, мкм |
2 |
3 |
3 |
2 |
Число уровней квантования, бит |
38 =24 |
38 =24 |
38 =24 |
110 |
Н
Рис.
9.6. Фотограмметрический сканер «Дельта»
(Украина)
З
атраты
времени на сканирование характеризуются
следующими данными для сканера
«Дельта» (рис. 9.6): черно-белый снимок
формата 2323
см с
геометрическим разрешением
8 мкм сканируется за 12 минут, а с
геометрическим разрешением
30 мкм – за 4 минуты.
Для получения цветного растрового
изображения того же формата и с той
же геометрической точностью требуется
30 и 9 минут соответственно.
Важнейшим элементом формирования цифрового изображения является эталонирование сканера, особенно в случае, если он не является фотограмметрическим. Сущность эталонирования заключается в сканировании контрольной сетки с нанесенными на нее горизонтальными и вертикальными штрихами, расстояния между которыми известны с точностью 1–2 мкм. На полученном изображении измеряют «пиксельные» координаты xP, yP крестов контрольной сетки в системе oPxPyP (рис. 9.2), преобразуют их в линейную меру с учетом заданного геометрического разрешения и сравнивают полученные значения с точными координатами, отсчитанными по контрольной сетке. По найденным разностям координат соответствующих точек строят поле искажений, характеризующее все виды геометрических искажений, вносимых сканером в той или иной точке поля сканирования.
В последующем изображения, полученные с помощью этого сканера, могут быть исправлены в соответствии с параметрами поля искажений. Имеющиеся публикации свидетельствуют, что искажения фотограмметрического сканера можно уменьшить до 1 мкм.
Цифровые съемочные системы (сенсоры) появились только на рубеже веков. К этому времени было достигнуто сопоставимое с фотоснимками геометрическое разрешение (5–6 мкм), появились средства хранения громадных объемов информации (порядка 1 Гб на каждый снимок), создана аппаратура стабилизации съемочной камеры в полете и высокоточного определения координат центров фотографирования.
В настоящее время успешно эксплуатируются несколько цифровых камер, в частности: ADS40 (фирма LH-System, Швейцария), DMC2001 (фирма Z/I Imaging (США, Германия), HRSC (центр космических исследований Германии DLR) и др., обеспечивающие возможность получения изображений как в видимой части спектра, так и в инфракрасном диапазоне. Имеются данные о Российских цифровых съемочных комплексах ЦТК-140 и ЦТК-70. Некоторые характеристики этих камер приведены в табл. 9.3.
Таблица 9.3 |
|||||
Наименование характеристики |
Характеристика камеры |
||||
ADS40 |
DMC |
HRSC |
ЦТК-140 |
ЦТК-70 |
|
Фокусное расстояние, мм |
62,5 |
120 |
47 - 175 |
140 |
70 |
Размер пиксела, мкм |
6,5 |
6 |
67 |
7 |
7 |
Число спектральных каналов |
6 |
12 |
5 |
1 |
4 |
Радиометрическое разрешение, бит |
8 |
8 |
8 12 |
8 |
10/8 |
Светочувствительный ПЗС-элемент |
линейка |
матрица |
линейка |
линейка |
линейка |
С точки зрения фотограмметрической обработки цифровых изображений, получаемых с помощью цифровых съемочных систем на ПЗС-линейках, чрезвычайно важны два обстоятельства:
1.
Изображения формируются в результате
сканирования местности в
направлении, перпендикулярном
направлению полета. Поэтому
результатом съемки являются не кадровые
снимки, а полосы изображений, так
что стереоскопические наблюдения и
измерения возможны только по полосе
перекрытия со смежным маршрутом (рис.
9.7, a).
2. Геометрия сканерных снимков не соответствует центральной проекции, поскольку каждая их строка формируется из собственного центра. Фотограмметрической обработке таких изображений предшествует преобразование их в форму, соответствующую законам построения изображений при центральном проектировании.
Отсутствие продольных перекрытий сканерных снимков и невозможность создания по ним стереопар существенно снижают точность их фотограмметрической обработки, поэтому современные съемочные системы предусматривают одновременное применение нескольких ПЗС-линеек, каждая из которых формирует изображение по определенному направлению (рис. 9.7, б).
Так, цифровая система ASD40 имеет в фокальной плоскости три ПЗС-линейки, одна из которых обеспечивает съемку полосы по направлению «вперед», вторая – полосы в направлении точки надира («вниз»), а третья – полосы «назад». Совместная обработка трех полос изображений позволяет получить продольные перекрытия и выполнить стереоскопические наблюдения.
Цифровая съемочная система HRSC (High Resolution Stereo Camera) с помощью девяти линеек ПЗС в фокальной плоскости объектива выполняет съемку одновременно девяти перекрывающихся полос, пять из которых используется для стереообработки, а остальные четыре обеспечивают получение изображения в том или ином оптическом диапазоне.