
- •Аналитическая химия и физико-химические методы анализа
- •Часть I содержит вопросы качественного анализа катионов и анионов.
- •Синий осадок «берлинской лазури»
- •Классификация анионов
- •Анализ качественного состава раствора
- •Предварительные испытания
- •Осадок PbCrO4 легко растворяет в растворах щелочей:
- •Хроматографический качественный анализ
- •Работа № 2 Качественное определение ионов железа, меди, кобальта и никеля в молоке методом тонкослойной хроматографии
- •Работа № 3 обнаружение анионов дробным методом
- •Вопросы для самопроверки
- •Часть II. К о л и ч е с т в е н н ы й а н а л и з
- •Работа № 4 Определение содержания серной кислоты
- •Перманганатометрия
- •Перманганатометрия работа№ 5 Определение содержания железа (II) в растворе соли Мора
- •Приготовление первичного стандартного раствора щавелевой
- •Установление концентрации раствора перманганата калия
- •Определение содержания железа (II) в растворе соли Мора
- •Иодометрия
- •Иодометрия работа № 6 Определение содержания меди (II) в растворе медного купороса
- •Приготовление первичного стандартного раствора дихромата калия.
- •Установление концентрации раствора тиосульфата натрия
- •3. Определение содержания Cu(II) в растворе медного купороса
- •Осадительное титрование
- •Аргентометрия
- •Работа № 7
- •Определение содержания NaCl в в растворе
- •(Обратное титрование по Фольгарду)
- •Работа № 8 Определение жесткости воды
- •Приготовление первичного стандартного раствора MgSo4
- •Вопросы для самопроверки
- •Часть III. Физико-химические методы анализа
- •Работа 9.1. Определение рН вина, сока (активной кислотности)
- •Работа № 9.2. Потенциометрическое определение титруемой кислотности вина (сока)
- •Ионометрический метод анализа
- •Работа № 10 Определение нитратов в экстрактах пищевого сырья
- •Работа № 11 определение содержания кислоты в растворе Приборы и материалы
- •Выполнение работы
- •Техника определения
- •Вопросы для самопроверки
- •Оптические методы анализа Спектральный анализ
- •Работа № 12 Определение содержания хрома и марганца на стилоскопе
- •Выполнение работы
- •Отождествление спектральных линий с помощью дисперсионной кривой
- •Полуколичественный спектральный анализ
- •Полуколичественный спектральный анализ
- •Количественный спектральный анализ
- •Работа № 13 Определение содержания ионов натрия, калия и кальция пламенно-фотометрическим методом
- •Выполнение работы
- •Приготовление эталонных растворов
- •Фотоэлектроколориметрический метод анализа
- •Работа № 14 Фотоколориметрические определение железа в белых винах
- •Выполнение работы
- •Построение градуированной кривой
- •Анализ вина
- •Люминесцентный анализ Флуориметрический метод
- •Работа № 15 определение витамина в2 (рибофламина) в драже или таблетках флуориметрическим методом
- •Построение градуировочной кривой
- •Измерение флуоресценции на флуориметре эф – зма
- •Расчет содержания рибофлавина в таблетках
- •Рефрактометрический анализ
- •Величину n2(отн.) называют относительным коэффициентом преломления второй среды по отношению к первой. Показатель преломления по отношению к вакууму называют абсолютным показателем преломления:
- •Работа № 16 Определение сухих веществ в сахарном сиропе на рефрактометре
- •Выполнение работы
- •Построение градуировочной кривой
- •Концентрация сухих веществ с%
- •Хроматографический количественный анализ
- •Работа № 17 Анализ смеси полисахарида и нитрата кобальта методом гельхроматографии
- •Выполнение работы
- •Спектрометрический анализ полисахарида на спектрофотометре
- •Вопросы для самопроверки:
- •Литература
- •Дополнительная литература:
Ионометрический метод анализа
Ионометрический метод анализа основан на прямом измерении электродвижущей силы (ЭДС) в системе, зависящей от концентрации потенциалопределяющего иона и относится к потенциометрическим методам анализа.
Ионоселективным электродом (ИСЭ) называется электрод, потенциал которого определяется преимущественно активностью одного единственного иона и слабо зависит от активности других, мешающих ионов.
Чувствительным элементом любого электрода является селективная мембрана, разность потенциалов (концентрационная разность потенциалов) по обе стороны которой линейно зависит от логарифма активности потенциалопределяющего иона в соответствии с уравнением Нернста. Конструктивно ИСЭ подобны рН – электродам.
Широкое применение при анализе пищевых продуктов получил нитрат-селектиновый электрод. Токсичность нитратов вызвана тем, что в живом организме нитраты превращаются в нитриты, которые способны взаимодействовать с гемоглабином крови, превращая его в неактивную форму метагемоглабина.
Работа № 10 Определение нитратов в экстрактах пищевого сырья
В настоящей работе используется ионоселективный мембранный электрод. Корпус электрода заполняется приэлектродным раствором с молярной концентрацией 10-1 моль/см3 KNO3 и 5. 10-3 моль/см3 KCl.
Принцип
работы электрода основан на том, что
при погружении электрода в р-р происходит
обмен ионами между поверхностью
ионочувствительной мембраны и раствором.
Между поверхностью мембраны и измеряемым
раствором возникает разность потенциалов,
значение которой пропорционально-lgCNO
-
или pNO3
измеряемого раствора. Потенциал электрода
измеряют по отношен к вспомогательному
электроду сравнения (например ЭВЛ 1МЗ),
в комплекте с рН-, милливольтметрами,
высокоомными измерительными
преобразователями, иономерами и рН 121.
Контролируемая среда не должна образовывать пленок и осадков на рабочей части (мембране) электрода и не должна содержать ионы Br- и J-. Допускается применение электрода в средах, образующих легкосмываемые водой осадки.
Электрод селективен в присутствии ионов Cl-, HCO3-, CH3COO-, F-, SO42-, соответственно при концентрациях не превышающих концентрацию ионов NO3- в 100, 500, 500, 1000 раз.
Индикаторный электрод ЭМ –NO3- - 0.1 и хлорсеребряный электрод сравнения погружают в исследуемый раствор, подключают электроды к иономеру ЭВ-74.
Диапазон линейности электродной характеристики электрода соблюдается от 0.35 до 4.0 pNO3 при прямых потенциометрических измерениях и от 0.17 до 5.0 pNO3 при потенциометрическом титровании, причем рН контролируемых сред от 2 до 9. Отклонение электродной характеристики от линейности в диапазоне 0,35 до 4,0 pNO3 не превышает +12 мв. Для этого используют контрольные растворы для калибровки электродов.
1 моль/дм3 KNO3 1 . 10-3 моль/дм3 KNO3
1 . 10-1 моль/дм3 KNO3 1 . 10-4 моль/дм3 KNO3
1 . 10-2 моль/дм3 KNO3
Перед калибровкой промыть три раза измерительный электрод в дистиллированной воде при перемешивании, меняя воду через каждые 5 мин. Затем электрод дважды промыть контрольным раствором, с которого предусмотрено начать калибровку.
Калибровку производить от низших концентраций к высшим. При переходе к растворам высшей концентрации электрод промыть контрольным раствором.
Подготовленные электроды помещают в исследуемый раствор и снимают показания со шкалы иономера ЭВ-74 в мв не менее, чем через 1 мин, после прекращения дрейфа показаний прибора.
Температура анализируемых проб и растворов сравнения должна быть одинаковой. Результаты калибровки электрода вносят в таблицу 2.
Таблица 2
Значения pNO3 (-lgCNO3-) контрольных растворов при температуре от 0 до 50º С и потенциал электрода (мв) в растворе KNO3 1.10-3 моль/кг
Сm(KNO3)1 Моль/кг |
1.10-4 |
1.103 |
1.10-2 |
1.10-1 |
pNO3 |
4,0 |
3,1 |
2,0 |
1,0- |
E, мв |
- |
265+20 |
- |
- |
По полученным данным строят градуировочный график в координатах Е, МВ – pNO3.На оси абсцисс откладывают значение pNO3, на оси ординат Е, мв. Допустимое отклонение точек от прямой, характеризующей электродную функцию, не должно превышать ±6мв.
По графику определяется крутизна характеристики – число милливольт на единицу рNO3 – мв/рNO3. Крутизна электродной характеристики составляет 56,5+3,0 МВ/pNO3 при температуре 25ºС.
Откалиброванный электрод в паре с электрод сравнения готов к работе. Перед определением концентрации нитрат- ионов в исследуемых пробах проводят настройку прибора ЭВ-74 по двум растворам, соответствующим началу и концу измеряемого диапазона pNO3. После этого приступают к измерениям неизвестной концентрации нитратов в исследуемых образцах.
Подготовка пробы анализируемого образца: клубни картофеля, огурцы, капуста, свекла, томаты, фрукты, бахчевые культуры, зерно.
Анализируемыеобразцы овощей, фруктов, бахчевых культур измельчают на терке до размера частиц не более 1 см. Зерно измельчают на лабораторной электрической мельнице. К 1 г измельченного анализируемого образца приливают 50 мл 1% раствора алюмо–калиевых квасцов и гомогенизируют в течение 3 минут. (При отсутствии гомогенизатора проводят экстракцию на встряхивателе в течение 5 минут).
В полученную суспензию погружают электроды и измеряют Е, МВ. По градуировочному графику определяют pNO3-. Находят С(NO3-) моль/дм3
Рассчитывают содержание нитратов в мг/кг
Х=
(мг/кг); где:
Н-навеска пробы, г.
Чувствительность метода 6мг/кг
По окончании работы электрод промывают в дистиллированной воде. Электрод ЭМ-NO3-01 хранят в растворе 0,1 KNO3. Если перерыв в работе составляет более 5 дней, электрод хранят на воздухе. Электрод сравнения хранят в дистиллированной воде.
К О Н Д У К Т О М Е Т Р И Я
Кондуктометрический метод анализа основан на измерении электрической проводимости (электропроводности) растворов электролитов.
Растворы электролитов обладают способностью проводить электрический ток под действием электрического поля. Двигающиеся в растворе ионы в поле электрического тока испытывают тормозящее действие со стороны молекул растворителя и окружающих противоположно заряженных ионов. Это так называемый релаксационный и электрофоретический эффекты. Результатом такого тормозящего действия является сопротивление раствора прохождению электрического тока. Электропроводность раствора W обратна его электрическому сопротивлению R:
W
=
(1)
где W – электропроводность раствора, Ом-1 или См (сименс),
R – электрическое сопротивление раствора, Ом
Для
измерения электропроводности растворов
используются электроды, погруженные в
этот раствор. Сопротивление раствора
обратно пропорционально площади
электродов S
(см2)
и прямо пропорционально расстоянию
между ними
(см):
R
=
(2)
где
- коэффициент пропорциональности,
называемый удельным сопротивлением,
Ом .
см;
Если принять = 1 см, S = 1 см2, то R = . При этих условиях удельное сопротивление равно сопротивлению 1 см3 раствора.
В
аналитических целях величина
“электропроводность – W”
как таковая используется крайне редко,
поскольку электропроводность любого
проводника – раствора или металла –
зависит от его размеров и форм. Чтобы
не учитывать зависимость электропроводности
от размеров проводника, пользуются
понятием “удельная электропроводность
”.
Удельная электропроводность
(Ом-1
.
см-1
или См .
см-1)
является величиной, обратной удельному
сопротивлению:
=
(3)
Удельная электропроводность характеризует только проводящую среду, т.к. она не зависит от геометрии проводника.
Удельная электропроводность соответствует электропроводности раствора объемом в 1 см3, находящегося между электродами площадью 1 см2, расположенным на расстоянии 1 см друг от друга.х)
Для разбавленных растворов удельная электропроводность изменяется пропорционально концентрации. Поэтому в расчетах удобно пользоваться эквивалентной электропроводностью.
Эквивалентной
электропроводностью называют проводимость
раствора, содержащего 1 моль эквивалента
вещества и находящегося между двумя
параллельными электродами, расстояние
между которыми 1 см. Единицей измерения
является См.см2/моль
экв. (СИ).
Удельная и эквивалентная проводимость взаимно связаны соотношением:
=
,
(4)
где С – молярная концентрация эквивалента, моль/л.
Подвижность ионов имеет постоянное максимальное значение при бесконечном разбавлении раствора, поэтому эквивалентная электропроводность раствора электролита при бесконечном разбавлении представляет собой постоянную величину, равную сумме подвижностей ионов при бесконечном разбавлении:
0 = 0+ + 0- (5)
где 0+ , 0- - предельная электропроводность (подвижность) ионов.
Если ион несет более одного заряда, то значение подвижности иона относят к одному заряду.
Когда в растворе присутствует больше, чем два вида ионов или смеси любых электролитов, эквивалентная электропроводность определяется уравнением Кольрауша:
=
(6)
Закон аддитивности электрической проводимости растворов электролитов при бесконечном разведении
где: С – общая концентрация электролита,
Сi –концентрация, I – ого вида ионов,
Zi - заряд ионов,
- ионные электрические проводимости (их величины указаны в книге Дж.Плэмбека “Электрохимические методы анализа”, М., “Мир”, 1985)
х) Примечание - Формулы, обозначения и размерности некоторых величин в системах СИ и СГС сведены в таблицу 3.
Таблица 3
№ пп |
Наименование величин |
Обозначение |
Наименование размерности |
Расчетные формулы |
|
Система СГС |
Система СИ |
||||
1 |
2 |
3 |
4 |
5 |
6 |
1 |
Электрическое сопротивление |
R |
Ом |
Ом |
|
2 |
Сила тока |
J |
А (Ампер) |
А (Ампер) |
|
3 |
Электрическое напряжение |
U |
В (Вольт) |
В (Вольт) |
|
4 |
Электрическая проводимость (электро-проводность) |
W |
Ом-1 |
См (сименс) |
|
5 |
Длина проводника |
|
см |
М |
|
6 |
Площадь сечения проводника |
S |
см2 |
М2 |
|
7 |
Удельное электрическое сопротивление |
|
Ом . см |
Ом . м |
|
8 |
Удельная электрическая проводимость |
|
Ом-1 . см-1 |
Ом-1 . м-1 или Ом-1 . см-1 |
|
9 |
Эквивалентная электрическая проводимость (эквивалентная электро-проводность) |
λ |
см2/Ом.(г-экв) |
Ом.см2/моль экв. Ом.м2.моль-1 |
|
10 |
Концентрация раствора |
C |
г- экв . л-1 |
моль . см-3 |
|
11 |
Объем раствора |
V |
л=дм3 мл=см3 |
М3 |
Аномально высокая подвижность ионов водорода и гидроксида в водных растворах объясняется особым механизмом передвижения этих ионов.
Известно несколько методов кондуктометрического анализа. Методом прямой кондуктометрии концентрация вещества определяется по электрической проводимости раствора, если между ними существует прямая пропорциональность и, в основном, для анализа однокомпонентных систем. Прямую кондуктометрию используют сравнительно редко, поскольку регистрируемый аналитический сигнал избирателен: электропроводность-величина аддитивная, определяемая наличием всех ионов в растворе.
Прямые кондуктометрические измерения успешно используют, например, для оценки чистоты растворителя, речных и минеральных вод, а также для определения констант диссоциации электролитов, состава и константы устойчивости комплексных соединений, растворимости малорастворимых электролитов.
Большое распространение в аналитической практике получил метод кондуктометрического титрования, основанный на использовании химической реакции, в результате которой происходит заметное изменение электропроводности раствора. При кондуктометрическом титровании могут быть использованы химические реакции всех типов.
Кондуктометрическое титрование обладает рядом достоинств: возможно дифференцированное титрование смесей ряда кислот или оснований, титрование мутных, окрашенных растворов, а также возможно титрование при образовании гидролизующихся солей. Нижний предел определяемых концентраций 10-4 моль/л, погрешность определений 2%.
При кондуктометрическом титровании происходит замещение ионов, находящихся в анализируемом растворе и участвующих в реакции с титрантом, ионами титранта, подвижностью которых больше или меньше подвижности ионов анализируемого раствора. Этим обусловлено получение восходящих или нисходящих ветвей кривых кондуктометрического титрования. Точность установления точки эквивалентности определяются углом пересечения прямых: угол должен быть как можно меньше, так как только в этом случае наблюдается излом на кривой титрования. Наиболее острый угол пересечения прямых получается при кислотно-основном титровании, так как ионы Н+ и ОН- вносят особенно большой вклад в электропроводность раствора. Наряду с реакциями кислотно-основного взаимодействия в кондуктометрии можно применять реакции осаждения, комплексообразования, окисления-восстановления.
В кислотно-основном титровании возможны следующие случаи (см. рис.9, 10, 11).
х Ом-1.см-1
d
а
в с
сильная слабая
кислота кислота
О V
см3 , титранта
Рис.9. Кривая титрования смеси сильной и слабой кислот сильным основанием
Х
тэ
тэ
V, см3 V, см3
а б
Рис.10. Кривые титрования слабой кислоты
а) сильным основанием, б.) слабым основанием
При осадительном титровании катион или анион анализируемого раствора образует осадок с анионом (или соответственно катионом) титранта.
Кондуктометрическое титрование обладает рядом преимуществ. Его можно проводить в мутных и окрашенных средах, а также в присутствии окислителей и восстановителей, ограничивающих применение кислотно-основных индикаторов. Метод обладает повышенной чувствительностью и позволяет анализировать разбавленные растворы (до 10-4); более точно устанавливается конечная точка при титровании слабых кислот и оснований.