
- •Хамадулин э.Ф. Методы и средства измерений в ткс
- •Предисловие
- •2.Измерения в телекоммуникационных системах
- •2.1.Современное состояние измерений в телекоммуникационных системах связи
- •2.2.Классификация измерительной аппаратуры
- •2.3.Свойства классических средств измерений и предъявленные к ним требования
- •2.4.Свойства средств измерений современных телекоммуникаций
- •2.5.Метрологическое обеспечение современных телекоммуникаций
- •3.Основные типы, параметры и характеристики сигналов в ткс
- •3.1.Основные характеристики интерфейса е1
- •3.2.Нормы на стабильность частоты. Джиттер в системах уе1.
- •3.3.Идеализированные испытательные импульсные сигналы
- •3.4.Частотная, импульсная характеристика и спектральная плотность
- •3.5. Определение спектральной плотности при измерениях
- •3.6.Модельное представление параметров импульсных сигналов
- •3.7.Параметры динамических характеристик
- •4. Радиоизмерения
- •4.1.Классификация радиоизмерений
- •4.2.Измерение напряжения и силы тока
- •4.2.1Электроизмерительные приборы
- •4.3.Методы измерения
- •4.3.1Метод непосредственной оценки
- •4.3.2Метод сравнения
- •4.4.Средства измерения (Электромеханические амперметры и вольтметры)
- •4.4.1Магнитоэлектрические приборы
- •4.5.Электромагнитные приборы
- •4.6.Электродинамические приборы
- •4.7.Ферродинамические приборы
- •4.8.Электростатические приборы
- •4.9.Выпрямительные приборы
- •4.10. Аналоговые электронные вольтметры
- •4.11. Автокомпенсационные вольтметры
- •4.12. Измерение токов и напряжений на вч
- •4.13. Термопреобразователи на вч
- •4.14. Основные составляющие погрешности измерения тп
- •4.14.1Температурная погрешность
- •4.14.2Частотная погрешность
- •4.15. Многоэлементный тп фирмы Fluke
- •4.16. Фотоэлектрические измерительные преобразователи тока
- •4.17. Электродинамические приборы
- •4.18. Масштабный измерительный преобразователь на основе пояса Роговского.
- •4.19. Перспективные средства измерений силы переменного тока
- •4.20. Заключение
- •5. Исследование формы и параметров сигнала
- •5.1. Принцип действия электронно-лучевой трубки
- •5.2.Матричная индикаторная панель.
- •5.3. Типы осциллографов
- •5.3.1Универсальный осциллограф
- •5.3.2Цифровые осциллографы
- •5.3.3Запоминающие цифровые осциллографы.
- •5.3.4Двухканальные и двухлучевые осциллографы.
- •5.3.5Скоростные и стробоскопические осциллографы.
- •5.3.6 Стробоскопические осциллографы
- •5.4. Способы отсчета напряжения и временных интервалов в осциллографах
- •5.4.1Цифровое измерение мгновенных значений амплитуды и временных параметров сигнала на входе прибора
- •5.4.2Измерение с помощью калибрационного напряжения на экране элт
- •5.4.3Компенсационный метод измерения периодического импульсного напряжения
- •5.4.4Новые функциональные возможности осциллографов
- •5.4.5Осциллографы с цифровыми измерительными блоками
- •5.4.6Автоматизация осциллографических измерений
- •5.4.7Цифровая коррекция погрешности измерения параметров сигналов
- •5.4.8Технические характеристики семейства цифровых вычислительных осциллографов
- •5.5. Расчет суммарной погрешности измерения осциллографа
- •6. Измерение параметров спектра радиосигналов
- •6.1. Характеристики спектра радиосигналов
- •6.2. Методы измерения характеристик спектра сигналов
- •6.3. Средства измерений характеристик спектра. Классификация, основные характеристики
- •6.3.1Анализаторы спектра параллельного действия
- •6.3.2Гетеродинные анализаторы спектра последовательного типа
- •6.3.3Анализаторы спектра на цифровом фильтре
- •6.3.4Вычислительные анализаторы спектра
- •7. Измерение мощности
- •7.1.Характеристики мощности
- •7.2. Классификация методов измерения мощности
- •7.3. Методы измерения мощности
- •7.3.1 Методы измерения поглощаемой мощности
- •7.3.2 Измерение мощности с помощью терморезисторов
- •7.3.3Болометры и их характеристики.
- •7.3.4Термисторы и их характеристики.
- •7.3.5Терморезисторные мосты.
- •7.3.6Погрешности терморезисторного метода.
- •7.3.7 Термоэлектрический метод измерения мощности
- •7.3.8Калориметрические методы измерения мощности
- •8.Радиочастотные измерения
- •8.1. Средства измерений напряженности электромагнитного поля.
- •8.2. Измерители напряженности поля
- •8.3. Измерители напряженности слабых полей
- •8.4. Инп сильных электромагнитных полей
- •8.5. Измерительные приемники
- •8.6.Измерительные антенны
- •8.6.1Штыревая антенна
- •8.6.2Дипольные антенны
- •8.6.3Логопериодические антенны
- •8.6.4Рамочные антенны
- •8.6.5Рупорные антенны
- •8.6.6 Биконическая антенна
- •9. Измерение частоты
- •9.1.Основные определения
- •9.2. Резонансные частотомеры
- •9.3.Электронно-счетные частотомеры
- •10. Измерительные генераторы. Классификация и метрологические характеристики измерительных генераторов свч.
- •10.1. Принципы генерирования сигналов свч
- •10.2. Типовые схемы генераторов сигналов свч
- •10.3. Структурные схемы генераторов свч
- •10.4.Цифровые измерительные генераторы низких частот
- •10.4.1Принципы аппроксимации.
- •10.5. Генераторы шумовых сигналов
- •10.6. Импульсные генераторы
- •11. Измерение шумов и помех
- •11.1. Измерение коэффициента шума
- •11.1.1Определение коэффициента шума
- •11.2.Методы измерения шумовых параметров радиоэлектронных устройств
- •11.3. Измерители коэффициента шума
- •11.4.Помехи и шумы в каналах передачи информации
- •11.5.Измерение радиопомех
- •11.6.Измерение напряжения радиопомех
- •11.7.Измерения напряженности поля радиопомех
- •11.8.Методика измерения напряжения радиопомех
- •11.9.Методика измерения напряженности поля радиопомех
- •12.Измерения в цифровых системах передачи
- •12.1.Работа мультиплексоров в цифровом потоке е1
- •12.2. Анализ процедур демультиплексирования
- •12.3.Измерения параметров физического уровня е1
- •11. 4. Приборы для измерения в цифровых каналах связи
- •11.5. Анализ ошибок в цифровых системах передачи
- •12.4.Методы и принципы измерений в широкополосных сетях связи атм
- •12.5.Измерения, проводимые с остановкой связи
- •12.6.Измерение коэффициента ошибок сигнала atm и проверка функционирования системы передачи
- •12.7.Универсальный сетевой анализатор
- •12.8. Измерения atm, проводимые с остановкой связи
- •12.9.Тестирование соединений atm и мониторинг заголовков
- •12.10.Измерение времени задержки ячеек
- •12.11.Ввод сигналов атм
- •12.12.Тестирование систем передачи атм без остановки связи
- •12.13.Анализ загрузки и каналов пользователей
- •12.14.Интернет: критический режим работы шлюзов
- •12.15.Требования, предъявляемые к тестовому оборудованию atm
- •13.Измерения на волоконно-оптических линиях связи
- •13.1.Измерение потерь на волоконно-оптической линии связи
- •13.2.Измерение коэффициента затухания оптической линии.
- •13.3.Методы определения неоднородностей оптической линии
- •13.4.Характеристики оптических рефлектометров
- •Р ис. 12.6 Прием мертвой зоны otdr
- •Р ис. 12.7 Определение величины мертвой зоны по затуханию
- •Разрешающая способность otdr
- •Точность измерений оптического рефлектомера
- •13.5.Функциональные параметры otdr
- •Длительность импульса
- •Длина волны otdr
- •Диапазон
- •Интервал усреднения результатов
- •Параметры волокна
- •13.6.Процедуры измерений
- •Р ис. 12.9 Пример изображения результатов измерения параметров волокон otdr
- •Выполнение измерений возвратных потерь
- •Р ис. 12.11 Пример измерения orl на рефлектограмме анализатора
- •13.7.Измерение хроматической дисперсии волокна
- •Р ис. 12.12 Хроматическая дисперсия
- •13.8.Измерение поляризационной модовой дисперсии (пмд)
- •Интерферометрический метод
- •Р ис. 12.14 Тестирование пмд методом фиксированного анализатора
- •13.9.Измерительная техника, используемая при эксплуатации восп Оптические измерители мощности
- •Р ис. 12.16 Характеристики зависимости выходного сигнала фотодиода от длины волны принимаемого сигнала
- •Стабилизированные источники оптического сигнала
- •Р ис. 12.18 Спектральная характеристика лазерного и светодиодного источника Светодиодные оптические источники
- •13.10.Визуальные дефектоскопы
- •13.11.Анализаторы затухания в оптическом кабеле
- •13.12.Перестраиваемые оптические аттенюаторы
- •13.13.Оптические рефлектометры
- •Р ис. 12.21 Принципиальная схема рефлектометра
- •Литература
Длина волны otdr
В зависимости от используемой длины волны свойства оптической системы могут сильно меняться. Различные длины волн определяют различные характеристики потерь и различное поведение сигнала в местах соединения волокон.
В общем случае, волокно должно быть протестировано с той длиной волны, которая будет использоваться при передаче информации. Однако, если тестирование выполняется только на одной длине волны, то следует учитывать следующие важнейшие факторы:
Сигнал с длиной волны 1550 нм более чувствителен к изгибам волокна, чем 1310 нм, таким образом, могут быть более детально исследованы все микроизгибы.
Используя источник 1550 нм, можно тестировать более длинные кабели, чем на длине волны 1310 нм, при том же уровне инжектируемой мощности.
Потери на сварках и соединениях на длине волны в 1310 нм выше, чем на длине волны в 1510 нм, и, следовательно, могут быть более детально исследованы.
Диапазон
Диапазон - это параметр OTDR, определяющий максимальное расстояние, на котором будет производиться поиск данных (определяется в метрах или километрах). При отсутствии предварительной информации о длине тестируемой линии связи, этот параметр для более точного нахождения конца волокна обычно подбирают опытным путем. Если диапазон установлен неточно, то рефлектограмма может быть отображена не полностью или включать в себя несуществующие всплески Френелевских отражений, так называемые «призраки».
Интервал усреднения результатов
Детектор OTDR работает с крайне низкими уровнями сигнала (приблизительно 100 фотонов на метр) для того, чтобы отделить отраженный сигнал от помех. Функция усреднения - это процесс, во время которого каждая точка рефлектограммы определяется многократно с последующим усреднением результатов, для точного выделения полезного сигнал и уменьшения влияния шумов. Подбирая оптимальное время сканирования или число усреднений, оператор управляет этим процессом в OTDR. Чем больше время или количество усреднений, тем более точный образ рефлектограммы появится на экране, тем больше динамический диапазон получаемых измерений.
Например, усреднение в течение 3 минут улучшит динамический диапазон на 0,8дБ по сравнению с 1-минутным периодом. Однако, эта зависимость носит нелинейный характер, и с ростом времени усреднения рост динамического диапазона все менее заметен.
Параметры волокна
Некоторые параметры волокна, которые могут воздействовать на результаты измерений OTDR:
Индекс преломления волокна. Этот параметр непосредственно связан с измерениями расстояния. Он определяется производителем оптического волокна с точностью до 0,01. Неправильная установка этого значения влечет за собой некорректную индикацию расстояний. Для того, чтобы избежать этого, индекс преломления должен быть установлен строго в соответствии с паспортным значением. При проведении измерений оптических линий следует учитывать тот факт, что длина волокна всегда несколько больше физической длины кабеля. Это объясняется наличием повива волокон и модулей в кабеле. Многие операторы хотят учесть этот фактор при паспортизации оптических линий. Это удобно сделать, введя так называемый «эффективный индекс преломления». Для вычисления эффективного индекса существует два пути:
Подсчет по известным параметрам. Определяются физическая (Leff) и оптическая (Lopt) длины кабеля и проводится вычисление по формуле:
RIeff = (Lopt · RIopt)/Leff
Здесь RIopt - паспортный индекс преломления волокна, RIeff-искомый эффективный индекс преломления.
Автоматический подсчет. Некоторые рефлектометры, например MTS5100e, позволяют вычислять эффективный индекс преломления по расстоянию между двумя событиями, если известна физическая длина между ними.
Коэффициент обратного отражения. Этот параметр определяет относительный уровень отраженного сигнала для конкретного волокна. Как и индекс преломления, этот параметр жестко задан производителем волокна. Коэффициент обратного отражения влияет, прежде всего, на измерение обратных потерь ORL (Optical Return Loss). При некорректном задании этого параметра измерение ORL становится проблематичным, кроме того, на рефлектограмме появляются ложные события (призраки). Типовым значением коэффициента обратного отражения является:
79 дБ для 1310 нм систем
81 дБ для 1550 нм систем.