
- •Вопрос 1
- •Вопрос 2
- •3.3. Технология Ethernet (802.3)
- •3.3.1. Метод доступа csma/cd
- •3.3.3. Форматы кадров технологии Ethernet
- •Кадр 802.3/llc
- •Cтруктура mac-адреса
- •Этапы доступа к среде
- •Возникновение коллизии
- •Домен коллизий
- •Вопрос 4
- •1.2.6. Структуризация как средство построения больших сетей
- •Ограничения топологии сети, построенной на мостах
- •5.1.1. Ограничения мостов и коммутаторов
- •Поддержка алгоритма Spanning Tree
- •Вопрос 7
- •1.3.1. Многоуровневый подход. Протокол. Интерфейс. Стек протоколов
- •1.3.2. Модель osi
- •1.3.3. Уровни модели osi
- •Вопрос 9
- •5.2. Адресация в ip-сетях
- •5.2.1. Типы адресов стека tcp/ip
- •5.2.2. Классы ip-адресов
- •5.2.3. Особые ip-адреса
- •Вопрос 10
- •5.2.4. Использование масок в ip-адресации
- •Вопрос 11
- •5.3.3. Таблицы маршрутизации в ip-сетях
- •Вопрос 12
- •5.3.5. Маршрутизация с использованием масок
- •Вопрос 13
- •Вопрос 14
- •[Править] Принцип работы
- •[Править] Применение
- •Вопрос 15
- •5.4.2. Дистанционно-векторный протокол rip
- •Вопрос 16
- •5.3. Протокол ip
- •5.3.1. Основные функции протокола ip
- •5.3.2. Структура ip-пакета
- •5.3.6. Фрагментация ip-пакетов
- •Вопрос 17
- •Вопрос 18
- •Вопрос 19
- •2.2. Методы передачи дискретных данных на физическом уровне
- •2.2.1. Аналоговая модуляция
- •Методы аналоговой модуляции
- •2.2.2. Цифровое кодирование
- •Требования к методам цифрового кодирования
- •Потенциальный код без возвращения к нулю
- •Потенциальный код с инверсией при единице
- •Манчестерский код
- •Четвертая передача — код mlt-3
- •Пятая передача — код pam 5
- •Вопрос 20
- •2.2.3. Логическое кодирование
- •Редуктор — координирование данных 4в5в
- •Вопрос 21
- •2.4. Методы коммутации
- •2.4.1. Коммутация каналов
- •2.4.2. Коммутация пакетов
Cтруктура mac-адреса
Стандарты IEEE определяют 48-разрядный (6 октетов) MAC-адрес, который разделен на четыре части.
Первые 3 октета (в порядке их передачи по сети; старшие 3 октета, если рассматривать их в традиционной бит-реверсной шестнадцатеричной записи MAC-адресов) содержат 24-битный уникальный идентификатор организации (OUI)[1], или (Код MFG — Manufacturing, производителя), который производитель получает в IEEE. При этом используются только младшие 22 разряда (бита), 2 старшие имеют специальное назначение:
первый бит указывает, для одиночного (0) или группового (1) адресата предназначен кадр
следующий бит указывает, является ли MAC-адрес глобально (0) или локально (1) администрируемым.
Этапы доступа к среде
Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения.
Чтобы получить возможность передавать кадр, станция должна убедиться, что разделяемая среда свободна. Это достигается прослушиванием основной гармоники сигнала, которая также называется несущей частотой (carrier-sense, CS). Признаком незанятости среды является отсутствие на ней несущей частоты, которая при манчестерском способе кодирования равна 5-10 МГц, в зависимости от последовательности единиц и нулей, передаваемых в данный момент.
Если среда свободна, то узел имеет право начать передачу кадра. Этот кадр изображен на рис. 3.3 первым. Узел 1 обнаружил, что среда свободна, и начал передавать свой кадр. В классической сети Ethernet на коаксиальном кабеле сигналы передатчика узла 1 распространяются в обе стороны, так что все узлы сети их получают. Кадр данных всегда сопровождается преамбулой (preamble), которая состоит из 7 байт, состоящих из значений 10101010, и 8-го байта, равного 10101011. Преамбула нужна для вхождения приемника в побитовый и побайтовый синхронизм с передатчиком.
Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные, передает их вверх по своему стеку, а затем посылает по кабелю кадр-ответ. Адрес станции источника содержится в исходном кадре, поэтому станция-получатель знает, кому нужно послать ответ.
Узел 2 во время передачи кадра узлом 1 также пытался начать передачу своего кадра, однако обнаружил, что среда занята - на ней присутствует несущая частота, - поэтому узел 2 вынужден ждать, пока узел 1 не прекратит передачу кадра.
После окончания передачи кадра все узлы сети обязаны выдержать технологическую паузу (Inter Packet Gap) в 9,6 мкс. Эта пауза, называемая также межкадровым интервалом, нужна для приведения сетевых адаптеров в исходное состояние, а также для предотвращения монопольного захвата среды одной станцией. После окончания технологической паузы узлы имеют право начать передачу своего кадра, так как среда свободна. Из-за задержек распространения сигнала по кабелю не все узлы строго одновременно фиксируют факт окончания передачи кадра узлом 1.
В приведенном примере узел 2 дождался окончания передачи кадра узлом 1, сделал паузу в 9,6 мкс и начал передачу своего кадра.